Publication:
Prediction of Thermal Conversion Characteristics for Co-Combustion of Waste Tire-Lignite Coal Using Machine Learning Algorithms

dc.authorscopusid57192697732
dc.authorscopusid56589621700
dc.authorscopusid43261041200
dc.authorscopusid7003728792
dc.authorwosidDemirci, Sercan/Acg-4553-2022
dc.authorwosidSahin, Durmus/Aaj-7961-2020
dc.authorwosidCeylan, Selim/Lsj-5591-2024
dc.authorwosidDemirci, Sercan/W-3371-2017
dc.authorwosidSöyler, Nejmi̇/Gzg-5638-2022
dc.contributor.authorSoyler, Nejmi
dc.contributor.authorSahin, Durmus Ozkan
dc.contributor.authorDemirci, Sercan
dc.contributor.authorCeylan, Selim
dc.contributor.authorIDDemirci, Sercan/0000-0001-6739-7653
dc.contributor.authorIDSöyler, Nejmi/0000-0002-4279-4262
dc.date.accessioned2025-12-11T01:21:30Z
dc.date.issued2025
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Soyler, Nejmi; Ceylan, Selim] Ondokuz Mayis Univ, Fac Engn, Dept Chem Engn, Samsun, Turkiye; [Soyler, Nejmi] Ege Univ, Grad Sch Nat & Appl Sci, Mat Sci & Engn, Izmir, Turkiye; [Sahin, Durmus Ozkan; Demirci, Sercan] Ondokuz Mayis Univ, Fac Engn, Dept Comp Engn, Samsun, Turkiyeen_US
dc.descriptionDemirci, Sercan/0000-0001-6739-7653; Söyler, Nejmi/0000-0002-4279-4262;en_US
dc.description.abstractCo-combustion of coal with various waste resources is an effective energy recovery strategy that integrates waste-derived fuels while reducing dependence on fossil fuels. In this study, machine learning algorithms were used to predict thermogravimetric data for the co-combustion process of waste tire (WT) and lignite coal (LC) blends to improve the understanding of the thermal conversion characteristics. The study analyzed the combustion behaviour of WT, LC, and their mixtures at four different heating rates (10, 20, 30, and 40 degrees C/min) and various mixing ratios (100:0, 20:80, 40:60, 50:50, 60:40, 80:20, and 0:100) using thermogravimetry-derivative thermogravimetry/differential scanning calorimetry (TG-DTG/DSC) techniques. To improve the prediction accuracy, eight machine learning algorithms-adaptive boosting regression, decision tree regression, k-nearest neighbour regression, linear regression, multi-layer perceptron, random forest regression, support vector machine regression, and XGBoost-were applied to model the co-combustion process. The results showed a strong correlation between experimental data and machine learning predictions, confirming the effectiveness of these models. By enabling accurate real-time prediction of thermal conversion characteristics, this study reduces the reliance on labour-intensive thermogravimetric analysis (TGA) and facilitates cost-effective, adaptive, and scalable optimization of combustion processes for industrial applications.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1002/cjce.25746
dc.identifier.endpage5845en_US
dc.identifier.issn0008-4034
dc.identifier.issn1939-019X
dc.identifier.issue12en_US
dc.identifier.scopus2-s2.0-105004676236
dc.identifier.scopusqualityQ2
dc.identifier.startpage5832en_US
dc.identifier.urihttps://doi.org/10.1002/cjce.25746
dc.identifier.urihttps://hdl.handle.net/20.500.12712/43198
dc.identifier.volume103en_US
dc.identifier.wosWOS:001483929000001
dc.identifier.wosqualityQ3
dc.language.isoenen_US
dc.publisherWileyen_US
dc.relation.ispartofCanadian Journal of Chemical Engineeringen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCo-Combustionen_US
dc.subjectLignite Coalen_US
dc.subjectMachine Learningen_US
dc.subjectThermal Conversionen_US
dc.subjectWaste Tireen_US
dc.titlePrediction of Thermal Conversion Characteristics for Co-Combustion of Waste Tire-Lignite Coal Using Machine Learning Algorithmsen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files