Publication: Halkalar Üzerinde Tanımlı Macdonald Kodlar
Abstract
Beş bölümden oluşan bu tezin, birinci bölümünde; kodlama teorisi, Simplex kodlar ve MacDonald kodlar hakkında yapılan çalışmalardan bahsedilmiştir. İkinci bölümde; cebirsel ifadeler, kodlama teorisi ile ilgili kavramlar ve teoremler verilmiştir. Materyal bölümünde; u^2=0 olmak üzere F_2+uF_2, u^3=0 olmak üzere F_2+uF_2+u^2 F_2, v^2=1 olmak üzere F_3+vF_3 sonlu değişmeli halkalarının cebirsel yapıları incelenmiş ve bu halkalar üzerinde Gray dönüşümü tanımlanarak ağırlık kavramları elde edilmiştir. Böylelikle bu halkalarda tanımlanan Simplex kodların üreteç matrisleri yardımıyla MacDonald kodlar oluşturulmuş ve özellikleri incelenmiştir. Bulgular bölümünün birinci kısmında, u^2=u,v^2=v,uv=vu=0 olmak üzere F_2+uF_2+vF_2 sonlu ve değişmeli halkası üzerinde bir Gray dönüşümü tanımlanarak Hamming, Lee ve Bachoc ağırlıkları elde edilmiştir. Bu halka üzerinde MacDonald kodlar inşa edilerek ağırlık dağılımları ve parametreler belirlenmiştir. Bulgular bölümünün ikinci kısmında, u^2=0,v^2=0,uv=vu=0 olmak üzere F_2+uF_2+vF_2 sonlu ve değişmeli halkası tanıtılarak bu halka üzerinde Gray dönüşümü tanımlanmıştır. Bu halka üzerindeki Simplex kodların üreteç matrisleri yardımıyla MacDonald kodlar inşa edilmiş ve Lee ağırlık dağılımları belirlenmiştir.
In the first part of this thesis, which contains of five section; coding theory, Simplex codes and MacDonald codes are introduced. In the second part; algebraic definitions, basic concepts and theorems about the coding theory are given. In the material section; algebraic structures are examined over the finite commutative rings F_2+uF_2, where u^2=0, F_2+uF_2+u^2 F_2, where u^3=0, F_3+vF_3, where v^2=1 and Gray map is defined over these rings and weight distributions were obtained. In this way, MacDonald codes are constructed by using generator matrices of Simplex codes over these rings and their properties are examined. In the first part of the last section, Hamming, Lee and Bachoc weights were obtained by defining a Gray map over the finite and commutative rings F_2+uF_2+vF_2 with u^2=u,v^2=v,uv=vu=0. MacDonald codes were constructed over this ring and weight distributions and parameters were determined. In the second part of the last section, the finite and commutative ring F_2+uF_2+vF_2, with u^2=0,v^2=0,uv=vu=0 is introduced and Gray map is defined over this ring. MacDonald codes were constructed by using generator matrices of Simplex codes over this ring and Lee weight distributions were determined.
In the first part of this thesis, which contains of five section; coding theory, Simplex codes and MacDonald codes are introduced. In the second part; algebraic definitions, basic concepts and theorems about the coding theory are given. In the material section; algebraic structures are examined over the finite commutative rings F_2+uF_2, where u^2=0, F_2+uF_2+u^2 F_2, where u^3=0, F_3+vF_3, where v^2=1 and Gray map is defined over these rings and weight distributions were obtained. In this way, MacDonald codes are constructed by using generator matrices of Simplex codes over these rings and their properties are examined. In the first part of the last section, Hamming, Lee and Bachoc weights were obtained by defining a Gray map over the finite and commutative rings F_2+uF_2+vF_2 with u^2=u,v^2=v,uv=vu=0. MacDonald codes were constructed over this ring and weight distributions and parameters were determined. In the second part of the last section, the finite and commutative ring F_2+uF_2+vF_2, with u^2=0,v^2=0,uv=vu=0 is introduced and Gray map is defined over this ring. MacDonald codes were constructed by using generator matrices of Simplex codes over this ring and Lee weight distributions were determined.
Description
Keywords
Citation
WoS Q
Scopus Q
Source
Volume
Issue
Start Page
End Page
60
