Publication:
Bayesian Inference for Bivariate Generalized Linear Models in Diagnosing Renal Arterial Obstruction

dc.authorscopusid12766595200
dc.contributor.authorCengiz, M.A.
dc.date.accessioned2020-06-21T09:23:32Z
dc.date.available2020-06-21T09:23:32Z
dc.date.issued2005
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Cengiz] Mehmet Ali, Department of Statistics, Ondokuz Mayis Üniversitesi, Samsun, Turkeyen_US
dc.description.abstractGeneralized linear models are well-established generalizations of the linear models used for regression and analysis of variance. They allow flexible mean structures and general distributions, other than the linear link and normal response assumed in regression. Further enhancements using ideas from multivariate analysis improve power and precision by modelling dependencies between response variables. This paper focuses on the specific case of regression models for bivariate Bernoulli responses and investigates their analysis using a Bayesian approach. The important problem of renal arterial obstruction is considered, as a medical application of these models. © 2005 Elsevier B.V. All rights reserved.en_US
dc.identifier.doi10.1016/j.stamet.2005.03.001
dc.identifier.endpage174en_US
dc.identifier.issn1572-3127
dc.identifier.issue3en_US
dc.identifier.scopus2-s2.0-33644779943
dc.identifier.startpage168en_US
dc.identifier.urihttps://doi.org/10.1016/j.stamet.2005.03.001
dc.identifier.volume2en_US
dc.institutionauthorCengiz, M.A.
dc.language.isoenen_US
dc.relation.ispartofStatistical Methodologyen_US
dc.relation.journalStatistical Methodologyen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBayesian Analysisen_US
dc.subjectBivariate Generalized Linear Modelen_US
dc.subjectRenal Arterial Obstructionen_US
dc.titleBayesian Inference for Bivariate Generalized Linear Models in Diagnosing Renal Arterial Obstructionen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files