Publication:
Identifying the Maturity of Co-Compost of Olive Mill Waste and Natural Mineral Materials: Modelling via ANN and Multi-Objective Optimization

dc.authorscopusid57225960992
dc.authorscopusid57200651210
dc.authorscopusid57090524600
dc.authorscopusid17436339900
dc.authorwosidCagcag Yolcu, Ozge/Hlw-7645-2023
dc.authorwosidTemel, Fulya/U-8361-2018
dc.contributor.authorAycan Dumenci, Nurdan
dc.contributor.authorCagcag Yolcu, Ozge
dc.contributor.authorAydin Temel, Fulya
dc.contributor.authorTuran, Nurdan Gamze
dc.contributor.authorIDAydin Temel, Fulya/0000-0001-8042-9998
dc.contributor.authorIDCagcag Yolcu, Ozge/0000-0003-3339-9313
dc.date.accessioned2025-12-11T01:14:54Z
dc.date.issued2021
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Aycan Dumenci, Nurdan; Turan, Nurdan Gamze] Ondokuz Mayis Univ, Fac Engn, Dept Environm Engn, TR-55200 Samsun, Turkey; [Cagcag Yolcu, Ozge] Marmara Univ, Fac Sci & Arts, Dept Stat, TR-34722 Istanbul, Turkey; [Aydin Temel, Fulya] Giresun Univ, Fac Engn, Dept Environm Engn, Giresun, Turkeyen_US
dc.descriptionAydin Temel, Fulya/0000-0001-8042-9998; Cagcag Yolcu, Ozge/0000-0003-3339-9313;en_US
dc.description.abstractIn this study, olive mill waste (OMW) and natural mineral amendments were co-composted to evaluate the compost maturity efficiency. The results were modelled by Feed-Forward Neural Networks (FF-NN) and ElmanRecurrent Neural Networks (ER-NN) and compared Response Surface Methodology (RSM). According to RSM produced a prediction error of more than 10% while Neural Networks (NNs) models were <2%. From, multiobjective optimization, the most suitable materials were expanded vermiculite and pumice with overall desirabilities of 0.60 and 0.56, respectively. The optimum amendment ratios were achieved with 14.3% of expanded vermiculite and 16.0% of pumice for OMW composting. Multivariate Analysis of Variance (MANOVA) results indicated that the materials had a strong effect on composting in parallel with the optimization results. NNs were predictors with superior properties to model the composting processes, can be used as modeling tools in many areas that are difficult and costly to perform new experiments.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1016/j.biortech.2021.125516
dc.identifier.issn0960-8524
dc.identifier.issn1873-2976
dc.identifier.pmid34271499
dc.identifier.scopus2-s2.0-85109871239
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1016/j.biortech.2021.125516
dc.identifier.urihttps://hdl.handle.net/20.500.12712/42336
dc.identifier.volume338en_US
dc.identifier.wosWOS:000685518700012
dc.identifier.wosqualityQ1
dc.language.isoenen_US
dc.publisherElsevier Sci Ltden_US
dc.relation.ispartofBioresource Technologyen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectOlive Mill Wasteen_US
dc.subjectCompostingen_US
dc.subjectArtificial Neural Networksen_US
dc.subjectResponse Surface Methodologyen_US
dc.subjectGenetic Algorithmen_US
dc.titleIdentifying the Maturity of Co-Compost of Olive Mill Waste and Natural Mineral Materials: Modelling via ANN and Multi-Objective Optimizationen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files