Publication:
A New Approach Based on Artificial Neural Networks for High Order Bivariate Fuzzy Time Series

dc.authorscopusid23093703600
dc.authorscopusid24282155300
dc.authorscopusid24282075600
dc.authorscopusid57211930065
dc.authorscopusid56242631900
dc.contributor.authorEgrioglu, E.
dc.contributor.authorUslu, V.R.
dc.contributor.authorYolcu, U.
dc.contributor.authorBaşaran, M.A.
dc.contributor.authorHakan, A.C.
dc.date.accessioned2020-06-21T15:07:44Z
dc.date.available2020-06-21T15:07:44Z
dc.date.issued2009
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Egrioglu] Erol, Department of Statistics, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Uslu] Vedide Rezan, Department of Statistics, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Yolcu] Ufuk, Department of Statistics, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Başaran] Murat Alper, Department of Mathematics, Niğde Ömer Halisdemir University, Nigde, Nigde, Turkey; [Hakan] Aladag C., Department of Statistics, Hacettepe Üniversitesi, Ankara, Turkeyen_US
dc.description.abstractWhen observations of time series are defined linguistically or do not follow the assumptions required for time series theory, the classical methods of time series analysis do not cope with fuzzy numbers and assumption violations. Therefore, forecasts are not reliable. [8], [9] gave a definition of fuzzy time series which have fuzzy observations and proposed a forecast method for it. In recent years, many researches about univariate fuzzy time series have been conducted. In [6], [5], [7], [4] and [10] bivariate fuzzy time series approaches have been proposed. In this study, a new method for high order bivariate fuzzy time series in which fuzzy relationships are determined by artificial neural networks (ANN) is proposed and the real data application of the proposed method is presented. © Springer-Verlag Berlin Heidelberg 2009.en_US
dc.identifier.doi10.1007/978-3-540-89619-7_26
dc.identifier.endpage273en_US
dc.identifier.isbn9783642205040
dc.identifier.isbn9783642273339
dc.identifier.isbn9783642256486
dc.identifier.isbn9783642293863
dc.identifier.isbn9783642286575
dc.identifier.isbn9783642237522
dc.identifier.isbn9783642251870
dc.identifier.isbn9783642283130
dc.identifier.isbn9783642199073
dc.identifier.isbn9783642199134
dc.identifier.issn1867-5662
dc.identifier.issn1860-0794
dc.identifier.scopus2-s2.0-79551652450
dc.identifier.startpage265en_US
dc.identifier.urihttps://doi.org/10.1007/978-3-540-89619-7_26
dc.identifier.volume58en_US
dc.identifier.wosWOS:000269657800026
dc.language.isoenen_US
dc.publisherSpringer Verlag service@springer.deen_US
dc.relation.ispartofAdvances in Intelligent and Soft Computingen_US
dc.relation.ispartofseriesAdvances in Intelligent and Soft Computing
dc.relation.journalApplications of Soft Computing: From Theory To Praxisen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.titleA New Approach Based on Artificial Neural Networks for High Order Bivariate Fuzzy Time Seriesen_US
dc.typeConference Objecten_US
dspace.entity.typePublication

Files