Publication: Classification of Famacha© Scores with Support Vector Machine Algorithm from Body Condition Score and Hematological Parameters in Pelibuey Sheep
| dc.authorscopusid | 57016748900 | |
| dc.authorscopusid | 56957224200 | |
| dc.authorscopusid | 57212504103 | |
| dc.authorscopusid | 57810361200 | |
| dc.authorscopusid | 35199701200 | |
| dc.authorscopusid | 6506711817 | |
| dc.authorscopusid | 59506025600 | |
| dc.authorwosid | Vazquez, Armando/P-2764-2018 | |
| dc.authorwosid | Cruz-Hernandez, Aldenamar/Mck-5752-2025 | |
| dc.authorwosid | Tozlu Çeli̇k, Hi̇lal/Abb-7535-2020 | |
| dc.authorwosid | Tırınk, Cem/Gry-5893-2022 | |
| dc.authorwosid | Tüfekci, Hacer/Nlo-4661-2025 | |
| dc.authorwosid | Camacho-Perez, Enrique/Aas-5140-2021 | |
| dc.contributor.author | Torres-Chable, Oswaldo Margarito | |
| dc.contributor.author | Tirink, Cem | |
| dc.contributor.author | Parra-Cortes, Rosa Ines | |
| dc.contributor.author | Delgado, Miguel angel Gastelum | |
| dc.contributor.author | Martinez, Ignacio Vazquez | |
| dc.contributor.author | Gomez-Vazquez, Armando | |
| dc.contributor.author | Chay-Canul, Alfonso J. | |
| dc.contributor.authorID | Şen, Uğur/0000-0001-6058-1140 | |
| dc.contributor.authorID | Chay-Canul, Alfonso Juventino/0000-0003-4412-4972 | |
| dc.contributor.authorID | Tozlu Çeli̇k, Hi̇lal/0000-0002-9744-7719 | |
| dc.contributor.authorID | Yilmaz, Omer Faruk/0000-0002-1411-7897 | |
| dc.contributor.authorID | Tirink, Cem/0000-0001-6902-5837 | |
| dc.contributor.authorID | Chable, Torres/0000-0001-7482-6663 | |
| dc.contributor.authorID | Parra-Cortés, Rosa Inés/0000-0002-8664-9446 | |
| dc.date.accessioned | 2025-12-11T01:40:13Z | |
| dc.date.issued | 2025 | |
| dc.department | Ondokuz Mayıs Üniversitesi | en_US |
| dc.department-temp | [Torres-Chable, Oswaldo Margarito; Delgado, Miguel angel Gastelum; Martinez, Ignacio Vazquez; Gomez-Vazquez, Armando; Cruz-Hernandez, Aldenamar; Chay-Canul, Alfonso J.] Univ Juarez Autonoma Tabasco, Div Acad Ciencias Agr, Carr Villahermosa Teapa,Km 25, Villahermosa 86298, Tabasco, Mexico; [Tirink, Cem] Igdir Univ, Fac Agr, Dept Anim Sci, Igdir, Turkiye; [Parra-Cortes, Rosa Ines] Univ Ciencias Aplicadas & Ambientales UDCA, Area Ciencias Agr, Grp Invest Ciencia Anim, Bogota 111166, Colombia; [Camacho-Perez, Enrique] Univ Autonoma Yucatan, Fac Ingn, Ave Ind Contaminantes S-N, Merida 97302, Yucatan, Mexico; [Dzib-Cauich, Dany Alejandro] Tecnol Nacl Mexico, Inst Tecnol Super Calkini, Ave Ah Canul, Calkini 24900, Campeche, Mexico; [Sen, Ugur] Ondokuz Mayis Univ, Fac Agr, Dept Agr Biotechnol, TR-55139 Samsun, Turkiye; [Tufekci, Hacer] Yozgat Bozok Univ, Fac Agr, Dept Anim Sci, TR-66000 Yozgat, Turkiye; [Bayyurt, Lutfi] Gaziosmanpasa Univ, Fac Agr, Dept Anim Sci, TR-60240 Tokat, Turkiye; [Celik, Hilal Tozlu] Ordu Univ, Vocat Sch Ulubey, Dept Food Proc, Ulubey TR-52850, Turkiye; [Yilmaz, Omer Faruk] Ondokuz Mayis Univ, Fac Agr, Dept Anim Sci, TR-55139 Samsun, Turkiye | en_US |
| dc.description | Şen, Uğur/0000-0001-6058-1140; Chay-Canul, Alfonso Juventino/0000-0003-4412-4972; Tozlu Çeli̇k, Hi̇lal/0000-0002-9744-7719; Yilmaz, Omer Faruk/0000-0002-1411-7897; Tirink, Cem/0000-0001-6902-5837; Chable, Torres/0000-0001-7482-6663; Camacho-Pérez, Enrique/0000-0002-2581-1921; Gómez Vázquez, Armando/0000-0002-2459-585X; Parra-Cortés, Rosa Inés/0000-0002-8664-9446 | en_US |
| dc.description.abstract | The aim of this study is to evaluate the model performance in the classification of FAMACHA (c) scores using Support Vector Machines (SVMs) with a focus on the estimation of the FAMACHA (c) scoring system used for early diagnosis and treatment management of parasitic infections. FAMACHA (c) scores are a color-based visual assessment system used to determine parasite load in animals, and in this study, the accuracy of the model was investigated. The model's accuracy rate was analyzed in detail with metrics such as sensitivity, specificity, and positive/negative predictive values. The results showed that the model had high sensitivity and specificity rates for class 1 and class 3, while the performance was relatively low for class 2. These findings not only demonstrate that SVM is an effective method for classifying FAMACHA (c) scores but also highlight the need for improvement for class 2. In particular, the high accuracy rate (97.26%) and high kappa value (0.9588) of the model indicate that SVM is a reliable tool for FAMACHA (c) score estimation. In conclusion, this study demonstrates the potential of SVM technology in veterinary epidemiology and provides important information for future applications. These results may contribute to efforts to improve scientific approaches for the management of parasitic infections. | en_US |
| dc.description.woscitationindex | Science Citation Index Expanded | |
| dc.identifier.doi | 10.3390/ani15050737 | |
| dc.identifier.issn | 2076-2615 | |
| dc.identifier.issue | 5 | en_US |
| dc.identifier.pmid | 40076020 | |
| dc.identifier.scopus | 2-s2.0-86000496570 | |
| dc.identifier.scopusquality | Q1 | |
| dc.identifier.uri | https://doi.org/10.3390/ani15050737 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12712/45307 | |
| dc.identifier.volume | 15 | en_US |
| dc.identifier.wos | WOS:001442656800001 | |
| dc.identifier.wosquality | Q1 | |
| dc.language.iso | en | en_US |
| dc.publisher | MDPI | en_US |
| dc.relation.ispartof | Animals | en_US |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | FAMACHA (C) | en_US |
| dc.subject | Anemia | en_US |
| dc.subject | Support Vector Machine | en_US |
| dc.subject | Machine Learning | en_US |
| dc.subject | Classification | en_US |
| dc.title | Classification of Famacha© Scores with Support Vector Machine Algorithm from Body Condition Score and Hematological Parameters in Pelibuey Sheep | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication |
