Publication:
Classification of Famacha© Scores with Support Vector Machine Algorithm from Body Condition Score and Hematological Parameters in Pelibuey Sheep

dc.authorscopusid57016748900
dc.authorscopusid56957224200
dc.authorscopusid57212504103
dc.authorscopusid57810361200
dc.authorscopusid35199701200
dc.authorscopusid6506711817
dc.authorscopusid59506025600
dc.authorwosidVazquez, Armando/P-2764-2018
dc.authorwosidCruz-Hernandez, Aldenamar/Mck-5752-2025
dc.authorwosidTozlu Çeli̇k, Hi̇lal/Abb-7535-2020
dc.authorwosidTırınk, Cem/Gry-5893-2022
dc.authorwosidTüfekci, Hacer/Nlo-4661-2025
dc.authorwosidCamacho-Perez, Enrique/Aas-5140-2021
dc.contributor.authorTorres-Chable, Oswaldo Margarito
dc.contributor.authorTirink, Cem
dc.contributor.authorParra-Cortes, Rosa Ines
dc.contributor.authorDelgado, Miguel angel Gastelum
dc.contributor.authorMartinez, Ignacio Vazquez
dc.contributor.authorGomez-Vazquez, Armando
dc.contributor.authorChay-Canul, Alfonso J.
dc.contributor.authorIDŞen, Uğur/0000-0001-6058-1140
dc.contributor.authorIDChay-Canul, Alfonso Juventino/0000-0003-4412-4972
dc.contributor.authorIDTozlu Çeli̇k, Hi̇lal/0000-0002-9744-7719
dc.contributor.authorIDYilmaz, Omer Faruk/0000-0002-1411-7897
dc.contributor.authorIDTirink, Cem/0000-0001-6902-5837
dc.contributor.authorIDChable, Torres/0000-0001-7482-6663
dc.contributor.authorIDParra-Cortés, Rosa Inés/0000-0002-8664-9446
dc.date.accessioned2025-12-11T01:40:13Z
dc.date.issued2025
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Torres-Chable, Oswaldo Margarito; Delgado, Miguel angel Gastelum; Martinez, Ignacio Vazquez; Gomez-Vazquez, Armando; Cruz-Hernandez, Aldenamar; Chay-Canul, Alfonso J.] Univ Juarez Autonoma Tabasco, Div Acad Ciencias Agr, Carr Villahermosa Teapa,Km 25, Villahermosa 86298, Tabasco, Mexico; [Tirink, Cem] Igdir Univ, Fac Agr, Dept Anim Sci, Igdir, Turkiye; [Parra-Cortes, Rosa Ines] Univ Ciencias Aplicadas & Ambientales UDCA, Area Ciencias Agr, Grp Invest Ciencia Anim, Bogota 111166, Colombia; [Camacho-Perez, Enrique] Univ Autonoma Yucatan, Fac Ingn, Ave Ind Contaminantes S-N, Merida 97302, Yucatan, Mexico; [Dzib-Cauich, Dany Alejandro] Tecnol Nacl Mexico, Inst Tecnol Super Calkini, Ave Ah Canul, Calkini 24900, Campeche, Mexico; [Sen, Ugur] Ondokuz Mayis Univ, Fac Agr, Dept Agr Biotechnol, TR-55139 Samsun, Turkiye; [Tufekci, Hacer] Yozgat Bozok Univ, Fac Agr, Dept Anim Sci, TR-66000 Yozgat, Turkiye; [Bayyurt, Lutfi] Gaziosmanpasa Univ, Fac Agr, Dept Anim Sci, TR-60240 Tokat, Turkiye; [Celik, Hilal Tozlu] Ordu Univ, Vocat Sch Ulubey, Dept Food Proc, Ulubey TR-52850, Turkiye; [Yilmaz, Omer Faruk] Ondokuz Mayis Univ, Fac Agr, Dept Anim Sci, TR-55139 Samsun, Turkiyeen_US
dc.descriptionŞen, Uğur/0000-0001-6058-1140; Chay-Canul, Alfonso Juventino/0000-0003-4412-4972; Tozlu Çeli̇k, Hi̇lal/0000-0002-9744-7719; Yilmaz, Omer Faruk/0000-0002-1411-7897; Tirink, Cem/0000-0001-6902-5837; Chable, Torres/0000-0001-7482-6663; Camacho-Pérez, Enrique/0000-0002-2581-1921; Gómez Vázquez, Armando/0000-0002-2459-585X; Parra-Cortés, Rosa Inés/0000-0002-8664-9446en_US
dc.description.abstractThe aim of this study is to evaluate the model performance in the classification of FAMACHA (c) scores using Support Vector Machines (SVMs) with a focus on the estimation of the FAMACHA (c) scoring system used for early diagnosis and treatment management of parasitic infections. FAMACHA (c) scores are a color-based visual assessment system used to determine parasite load in animals, and in this study, the accuracy of the model was investigated. The model's accuracy rate was analyzed in detail with metrics such as sensitivity, specificity, and positive/negative predictive values. The results showed that the model had high sensitivity and specificity rates for class 1 and class 3, while the performance was relatively low for class 2. These findings not only demonstrate that SVM is an effective method for classifying FAMACHA (c) scores but also highlight the need for improvement for class 2. In particular, the high accuracy rate (97.26%) and high kappa value (0.9588) of the model indicate that SVM is a reliable tool for FAMACHA (c) score estimation. In conclusion, this study demonstrates the potential of SVM technology in veterinary epidemiology and provides important information for future applications. These results may contribute to efforts to improve scientific approaches for the management of parasitic infections.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.3390/ani15050737
dc.identifier.issn2076-2615
dc.identifier.issue5en_US
dc.identifier.pmid40076020
dc.identifier.scopus2-s2.0-86000496570
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.3390/ani15050737
dc.identifier.urihttps://hdl.handle.net/20.500.12712/45307
dc.identifier.volume15en_US
dc.identifier.wosWOS:001442656800001
dc.identifier.wosqualityQ1
dc.language.isoenen_US
dc.publisherMDPIen_US
dc.relation.ispartofAnimalsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectFAMACHA (C)en_US
dc.subjectAnemiaen_US
dc.subjectSupport Vector Machineen_US
dc.subjectMachine Learningen_US
dc.subjectClassificationen_US
dc.titleClassification of Famacha© Scores with Support Vector Machine Algorithm from Body Condition Score and Hematological Parameters in Pelibuey Sheepen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files