Publication:
Artificial Intelligence and Machine Learning Approaches in Composting Process: A Review

dc.authorscopusid57090524600
dc.authorscopusid57200651210
dc.authorscopusid17436339900
dc.authorwosidTemel, Fulya/U-8361-2018
dc.authorwosidCagcag Yolcu, Ozge/Hlw-7645-2023
dc.contributor.authorTemel, Fulya Aydin
dc.contributor.authorYolcu, Ozge Cagcag
dc.contributor.authorTuran, Nurdan Gamze
dc.contributor.authorIDCagcag Yolcu, Ozge/0000-0003-3339-9313
dc.contributor.authorIDAydin Temel, Fulya/0000-0001-8042-9998
dc.date.accessioned2025-12-11T01:14:14Z
dc.date.issued2023
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Temel, Fulya Aydin] Giresun Univ, Fac Engn, Dept Environm Engn, TR-28200 Giresun, Turkiye; [Yolcu, Ozge Cagcag] Marmara Univ, Fac Sci & Arts, Dept Stat, TR-34722 Istanbul, Turkiye; [Turan, Nurdan Gamze] Ondokuz Mayis Univ, Fac Engn, Dept Environm Engn, TR-55200 Samsun, Turkiyeen_US
dc.descriptionCagcag Yolcu, Ozge/0000-0003-3339-9313; Aydin Temel, Fulya/0000-0001-8042-9998;en_US
dc.description.abstractStudies on developing strategies to predict the stability and performance of the composting process have increased in recent years. Machine learning (ML) has focused on process optimization, prediction of missing data, detection of non-conformities, and managing complex variables. This review investigates the perspectives and challenges of ML and its important algorithms such as Artificial Neural Networks (ANNs), Random Forest (RF), Adaptive-network-based fuzzy inference systems (ANFIS), Support Vector Machines (SVMs), and Deep Neural Networks (DNNs) used in the composting process. In addition, the individual shortcomings and inadequacies of the metrics, which were used as error or performance criteria in the studies, were emphasized. Except for a few studies, it was concluded that Artificial Intelligence (AI) algorithms such as Genetic algorithm (GA), Differential Evaluation Algorithm (DEA), and Particle Swarm Optimization (PSO) were not used in the optimization of the model parameters, but in the optimization of the parameters of the ML algorithms.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1016/j.biortech.2022.128539
dc.identifier.issn0960-8524
dc.identifier.issn1873-2976
dc.identifier.pmid36608858
dc.identifier.scopus2-s2.0-85146032444
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1016/j.biortech.2022.128539
dc.identifier.urihttps://hdl.handle.net/20.500.12712/42237
dc.identifier.volume370en_US
dc.identifier.wosWOS:000919556700001
dc.identifier.wosqualityQ1
dc.language.isoenen_US
dc.publisherElsevier Sci Ltden_US
dc.relation.ispartofBioresource Technologyen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectCompostingen_US
dc.subjectMaturityen_US
dc.subjectProcess Stabilityen_US
dc.subjectModelingen_US
dc.subjectMachine Learningen_US
dc.titleArtificial Intelligence and Machine Learning Approaches in Composting Process: A Reviewen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files