Publication: Artificial Intelligence and Machine Learning Approaches in Composting Process: A Review
| dc.authorscopusid | 57090524600 | |
| dc.authorscopusid | 57200651210 | |
| dc.authorscopusid | 17436339900 | |
| dc.authorwosid | Temel, Fulya/U-8361-2018 | |
| dc.authorwosid | Cagcag Yolcu, Ozge/Hlw-7645-2023 | |
| dc.contributor.author | Temel, Fulya Aydin | |
| dc.contributor.author | Yolcu, Ozge Cagcag | |
| dc.contributor.author | Turan, Nurdan Gamze | |
| dc.contributor.authorID | Cagcag Yolcu, Ozge/0000-0003-3339-9313 | |
| dc.contributor.authorID | Aydin Temel, Fulya/0000-0001-8042-9998 | |
| dc.date.accessioned | 2025-12-11T01:14:14Z | |
| dc.date.issued | 2023 | |
| dc.department | Ondokuz Mayıs Üniversitesi | en_US |
| dc.department-temp | [Temel, Fulya Aydin] Giresun Univ, Fac Engn, Dept Environm Engn, TR-28200 Giresun, Turkiye; [Yolcu, Ozge Cagcag] Marmara Univ, Fac Sci & Arts, Dept Stat, TR-34722 Istanbul, Turkiye; [Turan, Nurdan Gamze] Ondokuz Mayis Univ, Fac Engn, Dept Environm Engn, TR-55200 Samsun, Turkiye | en_US |
| dc.description | Cagcag Yolcu, Ozge/0000-0003-3339-9313; Aydin Temel, Fulya/0000-0001-8042-9998; | en_US |
| dc.description.abstract | Studies on developing strategies to predict the stability and performance of the composting process have increased in recent years. Machine learning (ML) has focused on process optimization, prediction of missing data, detection of non-conformities, and managing complex variables. This review investigates the perspectives and challenges of ML and its important algorithms such as Artificial Neural Networks (ANNs), Random Forest (RF), Adaptive-network-based fuzzy inference systems (ANFIS), Support Vector Machines (SVMs), and Deep Neural Networks (DNNs) used in the composting process. In addition, the individual shortcomings and inadequacies of the metrics, which were used as error or performance criteria in the studies, were emphasized. Except for a few studies, it was concluded that Artificial Intelligence (AI) algorithms such as Genetic algorithm (GA), Differential Evaluation Algorithm (DEA), and Particle Swarm Optimization (PSO) were not used in the optimization of the model parameters, but in the optimization of the parameters of the ML algorithms. | en_US |
| dc.description.woscitationindex | Science Citation Index Expanded | |
| dc.identifier.doi | 10.1016/j.biortech.2022.128539 | |
| dc.identifier.issn | 0960-8524 | |
| dc.identifier.issn | 1873-2976 | |
| dc.identifier.pmid | 36608858 | |
| dc.identifier.scopus | 2-s2.0-85146032444 | |
| dc.identifier.scopusquality | Q1 | |
| dc.identifier.uri | https://doi.org/10.1016/j.biortech.2022.128539 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12712/42237 | |
| dc.identifier.volume | 370 | en_US |
| dc.identifier.wos | WOS:000919556700001 | |
| dc.identifier.wosquality | Q1 | |
| dc.language.iso | en | en_US |
| dc.publisher | Elsevier Sci Ltd | en_US |
| dc.relation.ispartof | Bioresource Technology | en_US |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Composting | en_US |
| dc.subject | Maturity | en_US |
| dc.subject | Process Stability | en_US |
| dc.subject | Modeling | en_US |
| dc.subject | Machine Learning | en_US |
| dc.title | Artificial Intelligence and Machine Learning Approaches in Composting Process: A Review | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication |
