Publication:
High-Temperature Oxidation Effect on High-Velocity Oxygen Liquid Fuel and Laser-Remelted High-Velocity Oxygen Liquid Fuel MCrAlY Coatings

dc.authorscopusid56703426000
dc.authorscopusid37761501100
dc.authorwosidDoleker, Kadir/W-2341-2017
dc.authorwosidDoleker, Kadir Mert/W-2341-2017
dc.contributor.authorDoleker, Kadir Mert
dc.contributor.authorKaraoglanli, Abdullah Cahit
dc.contributor.authorIDDoleker, Kadir Mert/0000-0003-4057-6832
dc.date.accessioned2025-12-11T00:54:35Z
dc.date.issued2024
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Doleker, Kadir Mert] Ondokuz Mayis Univ, Engn Fac, Met & Mat Engn, Kurupelit Campus, Samsun, Turkiye; [Karaoglanli, Abdullah Cahit] Bartin Univ, Engn Architecture & Design Fac, Met & Mat Engn, Kutlubey Yazicilar Campus, Bartin, Turkiyeen_US
dc.descriptionDoleker, Kadir Mert/0000-0003-4057-6832en_US
dc.description.abstractMCrAlY coatings are widely used in high-temperature applications against oxidation and corrosion. Under high-temperature conditions, selective alumina formation which provides higher resistance to oxygen penetration is possible using the MCrAlY coatings. Metallic MCrAlY alloys can be produced by many coating techniques. The produced coatings can also be modified using surface treatments. In the present study, CoNiCrAlY was deposited on a 316L stainless steel (S.S.) substrate using the high-velocity oxygen liquid fuel (HVOLF) technique. The deposited coating was subjected to a laser surface remelting process. The remelted and as-sprayed CoNiCrAlY coatings were subjected to isothermal oxidation tests for 5, 25 and 50 h at 1050 & DEG;C. The produced and oxidized samples were characterized using scanning electron microscopy (SEM), SEM line and elemental mapping analysis, x-ray diffractometer, and Image-Pro Plus 6 software program. After the examination of oxidized samples, the laser-remelted coating exhibited superior oxidation resistance compared to the as-sprayed coating due to the eliminated porosities beneath the surface regions and the formation of the alpha alumina layer.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1007/s11665-023-08742-3
dc.identifier.endpage11150en_US
dc.identifier.issn1059-9495
dc.identifier.issn1544-1024
dc.identifier.issue20en_US
dc.identifier.scopus2-s2.0-85171587441
dc.identifier.scopusqualityQ3
dc.identifier.startpage11141en_US
dc.identifier.urihttps://doi.org/10.1007/s11665-023-08742-3
dc.identifier.urihttps://hdl.handle.net/20.500.12712/40185
dc.identifier.volume33en_US
dc.identifier.wosWOS:001069070300006
dc.identifier.wosqualityQ3
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofJournal of Materials Engineering and Performanceen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectHvolfen_US
dc.subjectLaser Remeltingen_US
dc.subjectMcralyen_US
dc.subjectOxidationen_US
dc.titleHigh-Temperature Oxidation Effect on High-Velocity Oxygen Liquid Fuel and Laser-Remelted High-Velocity Oxygen Liquid Fuel MCrAlY Coatingsen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files