Publication:
Stability Optimization of Al2O3/SiO2 Hybrid Nanofluids and a New Correlation for Thermal Conductivity: An AI-Supported Approach

dc.authorscopusid57215829500
dc.authorwosidSahi̇n, Fevzi/L-8303-2018
dc.authorwosidSahin, Fevzi/L-8303-2018
dc.contributor.authorSahin, Fevzi
dc.contributor.authorIDSahin, Fevzi/0000-0002-4808-4915
dc.date.accessioned2025-12-11T01:08:41Z
dc.date.issued2025
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Sahin, Fevzi] Ondokuz Mayis Univ, Mech Engn Dept, TR-55200 Samsun, Turkiyeen_US
dc.descriptionSahin, Fevzi/0000-0002-4808-4915en_US
dc.description.abstractDue to their high thermal conductivity compared to traditional coolants, nanofluids are preferred; however, their high thermal conductivity alone is meaningless without ensuring their stability. Therefore, when determining the appropriate mixing ratio (hybrid ratio) for hybrid nanofluids, which are starting to replace mono nanofluids today, the primary factor to consider should be stability. In this study, sedimentation and zeta potential measurements, which are methods for evaluating stability, were used to assess the stabilities of mono Al2O3/water and SiO2/water nanofluids with mass fractions of 1 %, 2 %, and 3 %, as well as hybrid Al2O3/SiO2/water (2 % to 1 %, 1 % to 2 %) nanofluids together for the first time in the literature, and the optimum Al2O3/SiO2 hybrid ratio was determined in terms of stability. The results showed that the optimal hybrid ratios for the stability of Al2O3-SiO2/water nanofluids are 1 and 0.714. Furthermore, the thermal conductivities of stable mono and hybrid nanofluids were measured between 25 and 60 degrees C, and a new correlation valid for both mono and hybrid nanofluids was proposed by modeling with artificial neural networks (MSE = 8.2175E-5 and R2 = 0.99958), with a maximum deviation ratio of 3.839 % (for mono SiO2/water) from the experimental measurements.en_US
dc.description.sponsorshipOndokuz Mayimath;s Universityen_US
dc.description.sponsorshipGratitude is extended to Ondokuz May & imath;s University for its support.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1007/s10765-024-03487-0
dc.identifier.issn0195-928X
dc.identifier.issn1572-9567
dc.identifier.issue1en_US
dc.identifier.scopus2-s2.0-85212256634
dc.identifier.scopusqualityQ3
dc.identifier.urihttps://doi.org/10.1007/s10765-024-03487-0
dc.identifier.urihttps://hdl.handle.net/20.500.12712/41598
dc.identifier.volume46en_US
dc.identifier.wosWOS:001381007300004
dc.identifier.wosqualityQ2
dc.institutionauthorSahin, Fevzi
dc.language.isoenen_US
dc.publisherSpringer/Plenum Publishersen_US
dc.relation.ispartofInternational Journal of Thermophysicsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectArtificial Neural Networken_US
dc.subjectHybrid Nanofluidsen_US
dc.subjectHybrid Ratioen_US
dc.subjectStabilityen_US
dc.subjectThermal Conductivityen_US
dc.titleStability Optimization of Al2O3/SiO2 Hybrid Nanofluids and a New Correlation for Thermal Conductivity: An AI-Supported Approachen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files