Publication:
Forecasting Turkey's Primary Energy Demand Based on Fuzzy Auto-Regressive Distributed Lag Models With Symmetric and Non-Symmetric Triangular Coefficients

dc.authorscopusid56011249400
dc.authorscopusid57220472891
dc.authorwosidEren, Miraç/V-3475-2017
dc.authorwosidDe Baets, Bernard/E-8877-2010
dc.contributor.authorEren, Mirac
dc.contributor.authorDe Baets, Bernard
dc.contributor.authorIDEren, Miraç/0000-0002-5150-9144
dc.date.accessioned2025-12-11T01:01:45Z
dc.date.issued2025
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Eren, Mirac] Ondokuz Mayis Univ, Fac Econ & Adm Sci, Samsun, Turkiye; [De Baets, Bernard] Univ Ghent, Fac Biosci Engn, Ghent, Belgiumen_US
dc.descriptionEren, Miraç/0000-0002-5150-9144;en_US
dc.description.abstractThis study aims to guide policymakers in allocating resources and planning for the future by consistently estimating energy data trends. Because of the complexity and uncertainty of energy demand behavior and many influencing factors, we decide to take advantage of a fuzzy regression model to determine the actual relationships in the energy demand system and provide an accurate forecast of energy demand. For this purpose, because of energy demand drivers, fuzzy possibilistic approaches with symmetric and non-symmetric triangular coefficients are integrated with the autoregressive distributed lag (ARDL) model, each in a time-series format with feedback mechanisms inside. After regularizing the L1 (Lasso regression) and L2 (ridge regression) metrics to minimize the overfitting problem, the optimal fuzzy-ARDL model is obtained. Turkey's primary energy consumption is projected based on the best model by benchmarking the static and dynamic possibilistic fuzzy regression models according to their training and test values.en_US
dc.description.sponsorshipTurkiye Bilimsel ve Teknolojik Aras timath;rma Kurumu (The Scientific and Technological Research Council of Turkey) (TUBI TAK) [2219-124K515]en_US
dc.description.sponsorshipThis study was supported by Turkiye Bilimsel ve Teknolojik Aras t & imath;rma Kurumu (The Scientific and Technological Research Council of Turkey) (TUBI TAK) (Grant No. 2219-124K515).en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1007/s40815-024-01773-5
dc.identifier.endpage249en_US
dc.identifier.issn1562-2479
dc.identifier.issn2199-3211
dc.identifier.issue1en_US
dc.identifier.scopus2-s2.0-85197163379
dc.identifier.scopusqualityQ2
dc.identifier.startpage237en_US
dc.identifier.urihttps://doi.org/10.1007/s40815-024-01773-5
dc.identifier.urihttps://hdl.handle.net/20.500.12712/40787
dc.identifier.volume27en_US
dc.identifier.wosWOS:001255163600001
dc.identifier.wosqualityQ2
dc.language.isoenen_US
dc.publisherSpringer Heidelbergen_US
dc.relation.ispartofINTERNATIONAL JOURNAL OF FUZZY SYSTEMSen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectFuzzy Regressionen_US
dc.subjectAuto-Regressive Modelen_US
dc.subjectDistributed Lagen_US
dc.subjectEnergy Consumptionen_US
dc.subjectForecasten_US
dc.subjectTriangular Coefficienten_US
dc.titleForecasting Turkey's Primary Energy Demand Based on Fuzzy Auto-Regressive Distributed Lag Models With Symmetric and Non-Symmetric Triangular Coefficientsen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files