Publication:
AI-Based Cybersecurity System for 5G Enabled Mini Computers Running Pardus OS

dc.authorscopusid57189466291
dc.authorscopusid60196262800
dc.authorscopusid60196457400
dc.authorscopusid60196262900
dc.contributor.authorAlsharif, F.
dc.contributor.authorBasaran, E.C.
dc.contributor.authorAgca, A.E.
dc.contributor.authorTopcuoglu, E.
dc.date.accessioned2025-12-11T00:34:04Z
dc.date.issued2025
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Alsharif] Fawzy, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Basaran] Emir Can, Kocaeli Üniversitesi, İzmit, Kocaeli, Turkey; [Agca] Ahmet Emir, T.C. Beykent Üniversitesi, Istanbul, Turkey; [Topcuoglu] Emirhan, Bolu Abant İzzet Baysal Üniversitesi, Bolu, Turkeyen_US
dc.description.abstractThis paper presents an AI-driven cybersecurity system tailored for 5G-enabled mini computers running the Pardus operating system. The system integrates real-time network monitoring using Suricata with dynamic threat intelligence from the Open Threat Exchange (OTX), allowing for the automated blocking of globally recognized threats. Detection is performed through a two-stage Random Forest model trained on the 5G-NIDD dataset, where 24 features were mapped from Suricata's traffic output. The binary classification model achieved 99.78% accuracy in distinguishing benign from malicious traffic, while the multiclass model identified specific attack types-such as HTTPFlood, SYNScan, and UDPFlood-with 97.48% accuracy. Designed with the computational constraints of edge environments in mind, the system incorporates lightweight, high-precision AI models and rule-based response mechanisms capable of executing threat-specific countermeasures in real time. Evaluation on a 5G-enabled mini computer demonstrates that the proposed approach delivers reliable detection performance with low latency and minimal resource usage, making it a practical solution for industrial IoT, smart infrastructure, and mobile edge deployments where autonomous and adaptive cyber defense is critical. © 2025 IEEE.en_US
dc.identifier.doi10.1109/FiCloud66139.2025.00072
dc.identifier.endpage484en_US
dc.identifier.isbn9798331554378
dc.identifier.scopus2-s2.0-105021992179
dc.identifier.startpage477en_US
dc.identifier.urihttps://doi.org/10.1109/FiCloud66139.2025.00072
dc.identifier.urihttps://hdl.handle.net/20.500.12712/37526
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof-- 12th International Conference on Future Internet of Things and Cloud, FiCloud 2025 -- 2025-08-11 through 2025-08-13 -- Istanbul -- 214221en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subject5G Technologyen_US
dc.subjectAI-Based Cybersecurityen_US
dc.subjectAutonomous Defense Mechanismen_US
dc.subjectMini Computersen_US
dc.subjectPardus OSen_US
dc.subjectThreat Detection and Classificationen_US
dc.titleAI-Based Cybersecurity System for 5G Enabled Mini Computers Running Pardus OSen_US
dc.typeConference Objecten_US
dspace.entity.typePublication

Files