Publication: AI-Based Cybersecurity System for 5G Enabled Mini Computers Running Pardus OS
| dc.authorscopusid | 57189466291 | |
| dc.authorscopusid | 60196262800 | |
| dc.authorscopusid | 60196457400 | |
| dc.authorscopusid | 60196262900 | |
| dc.contributor.author | Alsharif, F. | |
| dc.contributor.author | Basaran, E.C. | |
| dc.contributor.author | Agca, A.E. | |
| dc.contributor.author | Topcuoglu, E. | |
| dc.date.accessioned | 2025-12-11T00:34:04Z | |
| dc.date.issued | 2025 | |
| dc.department | Ondokuz Mayıs Üniversitesi | en_US |
| dc.department-temp | [Alsharif] Fawzy, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Basaran] Emir Can, Kocaeli Üniversitesi, İzmit, Kocaeli, Turkey; [Agca] Ahmet Emir, T.C. Beykent Üniversitesi, Istanbul, Turkey; [Topcuoglu] Emirhan, Bolu Abant İzzet Baysal Üniversitesi, Bolu, Turkey | en_US |
| dc.description.abstract | This paper presents an AI-driven cybersecurity system tailored for 5G-enabled mini computers running the Pardus operating system. The system integrates real-time network monitoring using Suricata with dynamic threat intelligence from the Open Threat Exchange (OTX), allowing for the automated blocking of globally recognized threats. Detection is performed through a two-stage Random Forest model trained on the 5G-NIDD dataset, where 24 features were mapped from Suricata's traffic output. The binary classification model achieved 99.78% accuracy in distinguishing benign from malicious traffic, while the multiclass model identified specific attack types-such as HTTPFlood, SYNScan, and UDPFlood-with 97.48% accuracy. Designed with the computational constraints of edge environments in mind, the system incorporates lightweight, high-precision AI models and rule-based response mechanisms capable of executing threat-specific countermeasures in real time. Evaluation on a 5G-enabled mini computer demonstrates that the proposed approach delivers reliable detection performance with low latency and minimal resource usage, making it a practical solution for industrial IoT, smart infrastructure, and mobile edge deployments where autonomous and adaptive cyber defense is critical. © 2025 IEEE. | en_US |
| dc.identifier.doi | 10.1109/FiCloud66139.2025.00072 | |
| dc.identifier.endpage | 484 | en_US |
| dc.identifier.isbn | 9798331554378 | |
| dc.identifier.scopus | 2-s2.0-105021992179 | |
| dc.identifier.startpage | 477 | en_US |
| dc.identifier.uri | https://doi.org/10.1109/FiCloud66139.2025.00072 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12712/37526 | |
| dc.language.iso | en | en_US |
| dc.publisher | Institute of Electrical and Electronics Engineers Inc. | en_US |
| dc.relation.ispartof | -- 12th International Conference on Future Internet of Things and Cloud, FiCloud 2025 -- 2025-08-11 through 2025-08-13 -- Istanbul -- 214221 | en_US |
| dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | 5G Technology | en_US |
| dc.subject | AI-Based Cybersecurity | en_US |
| dc.subject | Autonomous Defense Mechanism | en_US |
| dc.subject | Mini Computers | en_US |
| dc.subject | Pardus OS | en_US |
| dc.subject | Threat Detection and Classification | en_US |
| dc.title | AI-Based Cybersecurity System for 5G Enabled Mini Computers Running Pardus OS | en_US |
| dc.type | Conference Object | en_US |
| dspace.entity.type | Publication |
