Publication:
Comparative Analysis of MLR, ANN, and ANFIS Models for Prediction of Field Capacity and Permanent Wilting Point for Bafra Plain Soils

dc.authorscopusid57215381789
dc.authorscopusid7006472529
dc.contributor.authorTasan, S.
dc.contributor.authorDemir, Y.
dc.date.accessioned2020-06-21T12:18:25Z
dc.date.available2020-06-21T12:18:25Z
dc.date.issued2020
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Tasan] Sevda, Department of Agricultural Structures and Irrigation, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Demir] Yusuf, Department of Agricultural Structures and Irrigation, Ondokuz Mayis Üniversitesi, Samsun, Turkeyen_US
dc.description.abstractSoil hydraulic parameters like moisture content at field capacity and permanent wilting point constitute significant input parameters of various biophysical models and agricultural practices (irrigation timing and amount of irrigation to be applied). In this study, the performance of three different methods (Multiple linear regression–MLR, Artificial Neural Network–ANN and Adaptive Neuro-Fuzzy Inference System–ANFIS) with different input parameters in prediction of field capacity and permanent wilting point from easily obtained soil characteristics were compared. Correlation analysis indicated that clay content, sand content, cation exchange capacity, CaCO<inf>3</inf>, and organic matter had significant correlations with FC and PWP (p < .01). Validation results revealed that the ANN model with the greatest R2 and the lowest MAE and RMSE value exhibited better performance for prediction of FC and PWP than the MLR and ANFIS models. ANN model had R2 = 0.83, MAE = 2.36% and RMSE = 3.30% for FC and R2 = 0.81, MAE = 2.15%, RMSE = 2.89% for PWP in training dataset; R2 = 0.80, MAE = 2.27%, RMSE = 3.12% for FC and R2 = 0.83, MAE = 1.84%, RMSE = 2.40% for PWP in testing dataset. Also, Bayesian Regularization (BR) algorithm exhibited better performance for both FC and PWP than the other training algorithms. © 2020, © 2020 Taylor & Francis Group, LLC.en_US
dc.identifier.doi10.1080/00103624.2020.1729374
dc.identifier.endpage621en_US
dc.identifier.issn0010-3624
dc.identifier.issn1532-2416
dc.identifier.issue5en_US
dc.identifier.scopus2-s2.0-85080836147
dc.identifier.scopusqualityQ2
dc.identifier.startpage604en_US
dc.identifier.urihttps://doi.org/10.1080/00103624.2020.1729374
dc.identifier.volume51en_US
dc.identifier.wosWOS:000515046300001
dc.identifier.wosqualityQ3
dc.language.isoenen_US
dc.publisherTaylor and Francis Inc. 325 Chestnut St, Suite 800 Philadelphia PA 19106en_US
dc.relation.ispartofCommunications in Soil Science and Plant Analysisen_US
dc.relation.journalCommunications in Soil Science and Plant Analysisen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAdaptive Neuro-Fuzzy Inference Systemen_US
dc.subjectArtificial Neural Networken_US
dc.subjectField Capacityen_US
dc.subjectMultiple-Linear Regressionen_US
dc.subjectPermanent Wilting Pointen_US
dc.subjectWorden_US
dc.titleComparative Analysis of MLR, ANN, and ANFIS Models for Prediction of Field Capacity and Permanent Wilting Point for Bafra Plain Soilsen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files