Publication:
Mahalanobis Distance Based on Minimum Regularized Covariance Determinant Estimators for High Dimensional Data

dc.authorscopusid58075450500
dc.contributor.authorBulut, H.
dc.date.accessioned2020-06-21T12:18:39Z
dc.date.available2020-06-21T12:18:39Z
dc.date.issued2020
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Bulut] Hasan, Department of Statistics, Ondokuz Mayis Üniversitesi, Samsun, Turkeyen_US
dc.description.abstractOutlier detection is an extensively studied issue in robust literature. The most popular and traditional approach using to detect outliers is to calculate the Mahalanobis distance. However, conventional Mahalanobis distances may fail to detect outliers because they base on the classical sample mean vector and covariance matrix, which are sensitive to outliers. To solve this problem, the Minimum Covariance Determinant (MCD) estimators are used instead of classical estimators. However, the MCD estimators cannot be calculated in high dimensional data sets, which variable number p is higher than the sample size n. To detect outliers in high dimensional data, we propose Mahalanobis distance based on the Minimum Regularized Covariance Determinants (MRCD) estimators, which can be calculated in high dimensional data sets. We have shown that this distance is successful for outlier detection in high dimensional data sets with the simulation study and real data sets. © 2020 Taylor & Francis Group, LLC.en_US
dc.identifier.doi10.1080/03610926.2020.1719420
dc.identifier.endpage5907en_US
dc.identifier.issn0361-0926
dc.identifier.issue24en_US
dc.identifier.scopus2-s2.0-85078502796
dc.identifier.scopusqualityQ2
dc.identifier.startpage5897en_US
dc.identifier.urihttps://doi.org/10.1080/03610926.2020.1719420
dc.identifier.volume49en_US
dc.identifier.wosWOS:000511643300001
dc.identifier.wosqualityQ3
dc.institutionauthorBulut, H.
dc.language.isoenen_US
dc.publisherBellwether Publishing, Ltd. customerservice@taylorandfrancis.comen_US
dc.relation.ispartofCommunications in Statistics-Theory and Methodsen_US
dc.relation.journalCommunications in Statistics-Theory and Methodsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectHigh Dimensional Dataen_US
dc.subjectMahalanobis Distancesen_US
dc.subjectMinimum Diagonal Product Estimatorsen_US
dc.subjectMinimum Regularized Covariance Estimatorsen_US
dc.subjectRobust Distancesen_US
dc.titleMahalanobis Distance Based on Minimum Regularized Covariance Determinant Estimators for High Dimensional Dataen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files