Publication:
Estimating Ross 308 Broiler Chicken Weight through Integration of Random Forest Model and Metaheuristic Algorithms

dc.authorscopusid56541733100
dc.authorscopusid55976027400
dc.authorscopusid59404097200
dc.authorwosidKüçüktopçu, Erdem/Aba-5376-2021
dc.authorwosidKüçüktopcu, Erdem/Aba-5376-2021
dc.authorwosidCemek, Bilal/Aaz-7757-2020
dc.contributor.authorKucuktopcu, Erdem
dc.contributor.authorCemek, Bilal
dc.contributor.authorYildirim, Didem
dc.contributor.authorIDKüçüktopcu, Erdem/0000-0002-8708-2306
dc.contributor.authorIDCemek, Bilal/0000-0002-0503-6497
dc.contributor.authorIDYıldırım, Didem/0009-0005-0125-9756
dc.date.accessioned2025-12-11T01:30:51Z
dc.date.issued2024
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Kucuktopcu, Erdem; Cemek, Bilal; Yildirim, Didem] Ondokuz Mayis Univ, Dept Agr Struct & Irrigat, TR-55139 Samsun, Turkiyeen_US
dc.descriptionKüçüktopcu, Erdem/0000-0002-8708-2306; Cemek, Bilal/0000-0002-0503-6497; Yıldırım, Didem/0009-0005-0125-9756en_US
dc.description.abstractFor accurate estimation of broiler chicken weight (CW), a novel hybrid method was developed in this study where several benchmark methods, including Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Ant Colony Optimization (ACO), Differential Evolution (DE), and Gravity Search Algorithm (GSA), were employed to adjust the Random Forest (RF) hyperparameters. The performance of the RF models was compared with that of classic linear regression (LR). With this aim, data (temperature, relative humidity, feed consumption, and CW) were collected from six poultry farms in Samsun, T & uuml;rkiye, covering both the summer and winter seasons between 2014 and 2021. The results demonstrated that PSO and ACO significantly enhanced the performance of the standard RF model in all periods. Specifically, the RF-PSO model achieved a significant improvement by reducing the Mean Absolute Error (MAE) by 5.081% to 60.707%, highlighting its superior prediction accuracy and efficiency. The RF-ACO model also showed remarkable MAE reductions, ranging from 3.066% to 43.399%, depending on the input combinations used. In addition, the computational time required to train the RF models with PSO and ACO was considerably low, indicating their computational efficiency. These improvements emphasize the effectiveness of the PSO and ACO algorithms in achieving more accurate predictions of CW.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.3390/ani14213082
dc.identifier.issn2076-2615
dc.identifier.issue21en_US
dc.identifier.pmid39518805
dc.identifier.scopus2-s2.0-85208605463
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.3390/ani14213082
dc.identifier.urihttps://hdl.handle.net/20.500.12712/44218
dc.identifier.volume14en_US
dc.identifier.wosWOS:001351092200001
dc.identifier.wosqualityQ1
dc.language.isoenen_US
dc.publisherMDPIen_US
dc.relation.ispartofAnimalsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectWeighten_US
dc.subjectRandom Foresten_US
dc.subjectPoultryen_US
dc.subjectOptimizationen_US
dc.subjectHyperparameteren_US
dc.titleEstimating Ross 308 Broiler Chicken Weight through Integration of Random Forest Model and Metaheuristic Algorithmsen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files