Publication:
Identification of Transformer Internal Faults by Using an RBF Network Based on Dynamical Principle Component Analysis

dc.authorscopusid22433630600
dc.authorscopusid22953804000
dc.authorscopusid55727340000
dc.authorscopusid22433319300
dc.contributor.authorÖzgönenel, O.
dc.contributor.authorKilic, E.
dc.contributor.authorThomas, D.
dc.contributor.authorÖzdemir, A.E.
dc.date.accessioned2020-06-21T15:24:34Z
dc.date.available2020-06-21T15:24:34Z
dc.date.issued2007
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Özgönenel] Okan, Department of Electrical and Electronic Engineering, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Kilic] Erdal, Department of Computer Engineering, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Thomas] David William Phillip, School of Electrical and Electronic Engineering, University of Nottingham, Nottingham, Nottinghamshire, United Kingdom; [Özdemir] Ali Ekber, Department of Computer Engineering, Ondokuz Mayis Üniversitesi, Samsun, Turkeyen_US
dc.descriptionIEEE; Polytech. Inst. Setubal, Lab. Ind. Electr. Syst. (IPS LabSEI); Escola Superior de Tecnologia de Setubalen_US
dc.description.abstractIn this paper; a method is proposed to detect and identify parameter faults in nonlinear dynamical systems. The approach is based on the principal component analysis (PCA) and artificial neural networks (ANNs) based on radial basis functions (RBFs). A nonlinear system's input and output data is manipulated without taking consideration any model in the approach. The method is applied to a three phase custom built transformer in order to detect and identify internal short circuit faults. It is observed through various application examples that the proposed method leads to satisfactory results in terms of detecting parameter faults in non-linear dynamical systems. © 2007 IEEE.en_US
dc.identifier.doi10.1109/POWERENG.2007.4380215
dc.identifier.endpage724en_US
dc.identifier.scopus2-s2.0-82755189034
dc.identifier.startpage719en_US
dc.identifier.urihttps://doi.org/10.1109/POWERENG.2007.4380215
dc.identifier.wosWOS:000253451300126
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartof-- International Conference on Power Engineering, Energy and Electrical Drives, POWERENG 2007en_US
dc.relation.journalPowereng2007: International Conference on Power Engineering - Energy and Electrical Drives Proceedings, Vols 1 & 2en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.titleIdentification of Transformer Internal Faults by Using an RBF Network Based on Dynamical Principle Component Analysisen_US
dc.typeConference Objecten_US
dspace.entity.typePublication

Files