Publication:
Non-Invasive Coronary Artery Disease Identification Through the Iris and Bio-Demographic Health Profile Features Using Stacking Learning

dc.authorscopusid57225107818
dc.authorscopusid16230640200
dc.authorscopusid57190792483
dc.authorwosidÖzbilgin, Ferdi/Aec-3530-2022
dc.authorwosidKurnaz, Cetin/S-3469-2016
dc.authorwosidAydin, Ertan/Hjz-3245-2023
dc.contributor.authorOzbilgin, Ferdi
dc.contributor.authorKurnaz, Cetin
dc.contributor.authorAydin, Ertan
dc.contributor.authorIDKurnaz, Cetin/0000-0003-3436-899X
dc.date.accessioned2025-12-11T01:05:04Z
dc.date.issued2024
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Ozbilgin, Ferdi] Giresun Univ, Dept Elect & Elect Engn, Giresun, Turkiye; [Kurnaz, Cetin] Ondokuz Mayis Univ, Dept Elect & Elect Engn, Samsun, Turkiye; [Aydin, Ertan] Giresun Univ, Fac Med, Dept Cardiol, Giresun, Turkiyeen_US
dc.descriptionKurnaz, Cetin/0000-0003-3436-899X;en_US
dc.description.abstractThis study proposes a non-invasive method for predicting Coronary Artery Disease (CAD) using iris analysis, patient data, and Machine Learning (ML), primarily with iris images. It involved 281 participants, comprising 155 CAD patients and 126 non -patient controls, with eye images and biodemographic data collected at a Cardiology outpatient clinic. The study explored three scenarios: Scenario -I focused on biodemographic data, Scenario -II on iris features, and Scenario -III combined iris images and data. Iris processing included location determination, normalization, and heart region selection, with image enhancement via adaptive histogram equalization. Feature extraction through a 2 -level wavelet transform generated 272 attributes, including statistical, Gray Level Co -occurrence Matrix, and Gray Level Run Length Matrix features for eight subcomponents. Correlation -based selection identified the best features, and classification employed ML techniques and incorporated stacking learning to enhance the results. Scenario -I achieved the highest accuracy at 83.57% among all evaluated algorithms. In Scenario -II, the proposed algorithm consistently outperformed others, achieving 94.88% accuracy and strong performance in other metrics, highlighting its effectiveness. In Scenario -III, the algorithm maintained superiority with 96.07% accuracy, specificity, recall, and area under the curve values. The proposed algorithm consistently outperforms other methods across scenarios, indicating its potential for CAD diagnosis, making it a promising choice for future CAD systems. The proposed algorithm presents a novel approach to the preliminary diagnosis of CAD, eliminating the necessity for electrocardiography, echocardiography, or effort tests. It also enables seamless integration into telemedicine systems, allowing for tele -diagnosis to conduct preliminary assessments before routine clinical practice.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1016/j.imavis.2024.105046
dc.identifier.issn0262-8856
dc.identifier.issn1872-8138
dc.identifier.scopus2-s2.0-85191012637
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1016/j.imavis.2024.105046
dc.identifier.urihttps://hdl.handle.net/20.500.12712/41218
dc.identifier.volume146en_US
dc.identifier.wosWOS:001221316800001
dc.identifier.wosqualityQ1
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofImage and Vision Computingen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCoronary Artery Disease Iris, Image Processingen_US
dc.subjectBio-Demographic Dataen_US
dc.subjectStacking Machine Learningen_US
dc.titleNon-Invasive Coronary Artery Disease Identification Through the Iris and Bio-Demographic Health Profile Features Using Stacking Learningen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files