Publication:
Forecasting Nonlinear Time Series with a Hybrid Methodology

dc.authorscopusid23092915500
dc.authorscopusid23093703600
dc.authorscopusid6507405561
dc.contributor.authorAladag, C.H.
dc.contributor.authorEgrioglu, E.
dc.contributor.authorKadilar, C.
dc.date.accessioned2020-06-21T14:54:46Z
dc.date.available2020-06-21T14:54:46Z
dc.date.issued2009
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Aladag] Cagdas Hakan, Department of Statistics, Hacettepe Üniversitesi, Ankara, Turkey; [Egrioglu] Erol, Department of Statistics, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Kadilar] Cem, Department of Statistics, Hacettepe Üniversitesi, Ankara, Turkeyen_US
dc.description.abstractIn recent years, artificial neural networks (ANNs) have been used for forecasting in time series in the literature. Although it is possible to model both linear and nonlinear structures in time series by using ANNs, they are not able to handle both structures equally well. Therefore, the hybrid methodology combining ARIMA and ANN models have been used in the literature. In this study, a new hybrid approach combining Elman's Recurrent Neural Networks (ERNN) and ARIMA models is proposed. The proposed hybrid approach is applied to Canadian Lynx data and it is found that the proposed approach has the best forecasting accuracy. © 2009 Elsevier Ltd. All rights reserved.en_US
dc.identifier.doi10.1016/j.aml.2009.02.006
dc.identifier.endpage1470en_US
dc.identifier.issn0893-9659
dc.identifier.issn1873-5452
dc.identifier.issue9en_US
dc.identifier.scopus2-s2.0-67349285333
dc.identifier.scopusqualityQ1
dc.identifier.startpage1467en_US
dc.identifier.urihttps://doi.org/10.1016/j.aml.2009.02.006
dc.identifier.volume22en_US
dc.identifier.wosWOS:000267964200030
dc.identifier.wosqualityQ1
dc.language.isoenen_US
dc.publisherPergamon-Elsevier Science Ltden_US
dc.relation.ispartofApplied Mathematics Lettersen_US
dc.relation.journalApplied Mathematics Lettersen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectARIMAen_US
dc.subjectCanadian Lynx Dataen_US
dc.subjectHybrid Methoden_US
dc.subjectRecurrent Neural Networksen_US
dc.subjectTime Series Forecastingen_US
dc.titleForecasting Nonlinear Time Series with a Hybrid Methodologyen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files