Publication:
Variable Selection in Linear Regression Analysis With Alternative Bayesian Information Criteria Using Differential Evaluation Algorithm

dc.authorscopusid57191925575
dc.authorscopusid57191918830
dc.authorscopusid36126750400
dc.authorscopusid12766595200
dc.contributor.authorDunder, E.
dc.contributor.authorGumustekin, S.
dc.contributor.authorMurat, N.
dc.contributor.authorCengiz, M.A.
dc.date.accessioned2020-06-21T13:17:38Z
dc.date.available2020-06-21T13:17:38Z
dc.date.issued2018
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Dunder] Emre, Department of Statistics, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Gumustekin] Serpil, Department of Statistics, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Murat] Naci, Department of Industrial Engineering, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Cengiz] Mehmet Ali, Department of Statistics, Ondokuz Mayis Üniversitesi, Samsun, Turkeyen_US
dc.description.abstractIn statistical analysis, one of the most important subjects is to select relevant exploratory variables that perfectly explain the dependent variable. Variable selection methods are usually performed within regression analysis. Variable selection is implemented so as to minimize the information criteria (IC) in regression models. Information criteria directly affect the power of prediction and the estimation of selected models. There are numerous information criteria in literature such as Akaike Information Criteria (AIC) and Bayesian Information Criteria (BIC). These criteria are modified for to improve the performance of the selected models. BIC is extended with alternative modifications towards the usage of prior and information matrix. Information matrix-based BIC (IBIC) and scaled unit information prior BIC (SPBIC) are efficient criteria for this modification. In this article, we proposed a combination to perform variable selection via differential evolution (DE) algorithm for minimizing IBIC and SPBIC in linear regression analysis. We concluded that these alternative criteria are very useful for variable selection. We also illustrated the efficiency of this combination with various simulation and application studies. © 2017 Taylor & Francis Group, LLC.en_US
dc.identifier.doi10.1080/03610918.2017.1288245
dc.identifier.endpage614en_US
dc.identifier.issn0361-0918
dc.identifier.issn1532-4141
dc.identifier.issue2en_US
dc.identifier.scopus2-s2.0-85020211399
dc.identifier.scopusqualityQ3
dc.identifier.startpage605en_US
dc.identifier.urihttps://doi.org/10.1080/03610918.2017.1288245
dc.identifier.volume47en_US
dc.identifier.wosWOS:000424159000020
dc.identifier.wosqualityQ3
dc.language.isoenen_US
dc.publisherTaylor and Francis Inc. 325 Chestnut St, Suite 800 Philadelphia PA 19106en_US
dc.relation.ispartofCommunications in Statistics: Simulation and Computationen_US
dc.relation.journalCommunications in Statistics-Simulation and Computationen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDifferential Evolution Algorithmen_US
dc.subjectInformation Criteriaen_US
dc.subjectLinear Regressionen_US
dc.subjectOptimizationen_US
dc.subjectVariable Selectionen_US
dc.titleVariable Selection in Linear Regression Analysis With Alternative Bayesian Information Criteria Using Differential Evaluation Algorithmen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files