Publication: Comparison of Machine Learning Based Anomaly Detection Methods for ADS-B System
| dc.authorscopusid | 57212212021 | |
| dc.authorscopusid | 15833929800 | |
| dc.authorwosid | Akleylek, Sedat/D-2090-2015 | |
| dc.contributor.author | Cevik, Nursah | |
| dc.contributor.author | Akleylek, Sedat | |
| dc.contributor.authorID | Akleylek, Sedat/0000-0001-7005-6489 | |
| dc.contributor.authorID | Çevik, Nurşah/0000-0001-7066-3633 | |
| dc.date.accessioned | 2025-12-11T01:15:27Z | |
| dc.date.issued | 2025 | |
| dc.department | Ondokuz Mayıs Üniversitesi | en_US |
| dc.department-temp | [Cevik, Nursah] HAVELSAN, Ankara, Turkiye; [Cevik, Nursah] Ondokuz Mayis Univ, Computat Sci, Samsun, Turkiye; [Akleylek, Sedat] Univ Tartu, Inst Comp Sci, Tartu, Estonia; [Akleylek, Sedat] Istinye Univ, Dept Comp Engn, Istanbul, Turkiye | en_US |
| dc.description | Akleylek, Sedat/0000-0001-7005-6489; Çevik, Nurşah/0000-0001-7066-3633 | en_US |
| dc.description.abstract | This paper introduces an anomaly/intrusion detection system utilizing machine learning techniques for detecting attacks in the Automatic Detection System-Broadcast (ADS-B). Real ADS-B messages between Turkiye's coordinates are collected to train and test machine learning models. After data collection and pre-processing steps, the authors generate the attack datasets by using real ADS-B data to simulate two attack scenarios, which are constant velocity increase/decrease and gradually velocity increase or decrease attacks. The efficacy of fivemachine learning algorithms, including decision trees, extra trees, gaussian naive bayes, k-nearest neighbors, and logistic regression, is evaluated across different attack types. This paper demonstrates that tree-based algorithms consistently exhibit superior performance across a spectrum of attack scenarios. Moreover, the research underscores the significance of anomaly or intrusion detection mechanisms for ADS-B systems, highlights the practical viability of employing tree-based algorithms in air traffic management, and suggests avenues for enhancing safety protocols and mitigating potential risks in the airspace domain. | en_US |
| dc.description.woscitationindex | Conference Proceedings Citation Index - Science | |
| dc.identifier.doi | 10.1007/978-3-031-73420-5_23 | |
| dc.identifier.endpage | 286 | en_US |
| dc.identifier.isbn | 9783031734199 | |
| dc.identifier.isbn | 9783031734205 | |
| dc.identifier.issn | 1865-0929 | |
| dc.identifier.issn | 1865-0937 | |
| dc.identifier.scopus | 2-s2.0-85207843987 | |
| dc.identifier.scopusquality | Q4 | |
| dc.identifier.startpage | 275 | en_US |
| dc.identifier.uri | https://doi.org/10.1007/978-3-031-73420-5_23 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12712/42406 | |
| dc.identifier.volume | 2226 | en_US |
| dc.identifier.wos | WOS:001436940700023 | |
| dc.language.iso | en | en_US |
| dc.publisher | Springer International Publishing AG | en_US |
| dc.relation.ispartof | Communications in Computer and Information Science | en_US |
| dc.relation.ispartofseries | Communications in Computer and Information Science | |
| dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | ADS-B | en_US |
| dc.subject | Anomaly Detection System | en_US |
| dc.subject | Intrusion Detection System | en_US |
| dc.subject | IDS | en_US |
| dc.subject | Machine Learning | en_US |
| dc.subject | Avionics Security | en_US |
| dc.subject | Cyber Security | en_US |
| dc.title | Comparison of Machine Learning Based Anomaly Detection Methods for ADS-B System | en_US |
| dc.type | Conference Object | en_US |
| dspace.entity.type | Publication |
