Publication:
Comparison of Machine Learning Based Anomaly Detection Methods for ADS-B System

dc.authorscopusid57212212021
dc.authorscopusid15833929800
dc.authorwosidAkleylek, Sedat/D-2090-2015
dc.contributor.authorCevik, Nursah
dc.contributor.authorAkleylek, Sedat
dc.contributor.authorIDAkleylek, Sedat/0000-0001-7005-6489
dc.contributor.authorIDÇevik, Nurşah/0000-0001-7066-3633
dc.date.accessioned2025-12-11T01:15:27Z
dc.date.issued2025
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Cevik, Nursah] HAVELSAN, Ankara, Turkiye; [Cevik, Nursah] Ondokuz Mayis Univ, Computat Sci, Samsun, Turkiye; [Akleylek, Sedat] Univ Tartu, Inst Comp Sci, Tartu, Estonia; [Akleylek, Sedat] Istinye Univ, Dept Comp Engn, Istanbul, Turkiyeen_US
dc.descriptionAkleylek, Sedat/0000-0001-7005-6489; Çevik, Nurşah/0000-0001-7066-3633en_US
dc.description.abstractThis paper introduces an anomaly/intrusion detection system utilizing machine learning techniques for detecting attacks in the Automatic Detection System-Broadcast (ADS-B). Real ADS-B messages between Turkiye's coordinates are collected to train and test machine learning models. After data collection and pre-processing steps, the authors generate the attack datasets by using real ADS-B data to simulate two attack scenarios, which are constant velocity increase/decrease and gradually velocity increase or decrease attacks. The efficacy of fivemachine learning algorithms, including decision trees, extra trees, gaussian naive bayes, k-nearest neighbors, and logistic regression, is evaluated across different attack types. This paper demonstrates that tree-based algorithms consistently exhibit superior performance across a spectrum of attack scenarios. Moreover, the research underscores the significance of anomaly or intrusion detection mechanisms for ADS-B systems, highlights the practical viability of employing tree-based algorithms in air traffic management, and suggests avenues for enhancing safety protocols and mitigating potential risks in the airspace domain.en_US
dc.description.woscitationindexConference Proceedings Citation Index - Science
dc.identifier.doi10.1007/978-3-031-73420-5_23
dc.identifier.endpage286en_US
dc.identifier.isbn9783031734199
dc.identifier.isbn9783031734205
dc.identifier.issn1865-0929
dc.identifier.issn1865-0937
dc.identifier.scopus2-s2.0-85207843987
dc.identifier.scopusqualityQ4
dc.identifier.startpage275en_US
dc.identifier.urihttps://doi.org/10.1007/978-3-031-73420-5_23
dc.identifier.urihttps://hdl.handle.net/20.500.12712/42406
dc.identifier.volume2226en_US
dc.identifier.wosWOS:001436940700023
dc.language.isoenen_US
dc.publisherSpringer International Publishing AGen_US
dc.relation.ispartofCommunications in Computer and Information Scienceen_US
dc.relation.ispartofseriesCommunications in Computer and Information Science
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectADS-Ben_US
dc.subjectAnomaly Detection Systemen_US
dc.subjectIntrusion Detection Systemen_US
dc.subjectIDSen_US
dc.subjectMachine Learningen_US
dc.subjectAvionics Securityen_US
dc.subjectCyber Securityen_US
dc.titleComparison of Machine Learning Based Anomaly Detection Methods for ADS-B Systemen_US
dc.typeConference Objecten_US
dspace.entity.typePublication

Files