Publication:
Implementation of Adaptive Lasso Regression Based on Multiple Theil-Sen Estimators Using Differential Evolution Algorithm with Heavy Tailed Errors

dc.authorwosidCengiz, Mehmet/Agz-9391-2022
dc.contributor.authorDunder, E.
dc.contributor.authorZaman, T.
dc.contributor.authorCengiz, M. A.
dc.contributor.authorAlakus, K.
dc.contributor.authorIDZaman, Tolga/0000-0001-8780-3655
dc.date.accessioned2025-12-11T01:12:43Z
dc.date.issued2022
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Dunder, E.; Cengiz, M. A.; Alakus, K.] Ondokuz Mayis Univ, Dept Stat, Fac Sci, Samsun, Turkey; [Zaman, T.] Cankiri Karatekin Univ, Dept Stat, Fac Sci, Cankiri, Turkeyen_US
dc.descriptionZaman, Tolga/0000-0001-8780-3655en_US
dc.description.abstractThe last decade has witnessed that penalized regression methods have become an alternative to classical methods. Adaptive lasso is one type of method in penalized regression and is commonly used in statistical modelling to perform variable selection. Apart from the classical lasso setting, the adaptive lasso requires the coefficient weights inside the target function. The main issue in adaptive lasso is to select the optimal weights in the model since the selected weights have serious impacts on the estimation results. However, there is no compromise for choosing the weights as a universal approach, and they should he chosen properly with the statistical assumptions. When the error terms are heavy tailed; classical estimation (such as least squares) gives poor results in adaptive lasso because of the lacking robustness. This article deals with the selection of optimal weights in the presence of heavy-tailed errors for the adaptive lasso. To solve the distributional problem, we integrated the Theil-Sen estimation (ISE) approach into the adaptive lasso for heavy tailed erroneous cases while choosing the weights. During the selection of the optimal tuning parameters, we employed a differential evolution algorithm (DEA) between a range of lambda values. The simulation studies and real data examples confirm the power of our combination of Theil-Sen estimators and differential evolution algorithm in the presence of heavy tailed errors in the adaptive lasso.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.4038/jnsfsr.v50i2.10292
dc.identifier.endpage404en_US
dc.identifier.issn1391-4588
dc.identifier.issn2362-0161
dc.identifier.issue2en_US
dc.identifier.scopusqualityQ3
dc.identifier.startpage395en_US
dc.identifier.urihttps://doi.org/10.4038/jnsfsr.v50i2.10292
dc.identifier.urihttps://hdl.handle.net/20.500.12712/42049
dc.identifier.volume50en_US
dc.identifier.wosWOS:000888595600006
dc.identifier.wosqualityQ4
dc.language.isoenen_US
dc.publisherNational Science Foundation Sri Lankaen_US
dc.relation.ispartofJournal of the National Science Foundation of Sri Lankaen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectAdaptive Lassoen_US
dc.subjectHeavy-Tailed Errorsen_US
dc.subjectTheil-Sen Estimatorsen_US
dc.subjectWeight Vector Selectionen_US
dc.titleImplementation of Adaptive Lasso Regression Based on Multiple Theil-Sen Estimators Using Differential Evolution Algorithm with Heavy Tailed Errorsen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files