Publication:
Novel Machine Learning Approaches for Accurate Leaf Area Estimation in Apples

dc.authorscopusid6507259099
dc.authorscopusid56541733100
dc.authorscopusid58136039100
dc.authorwosidDemirsoy, Husnu/A-9743-2018
dc.authorwosidKüçüktopçu, Erdem/Aba-5376-2021
dc.authorwosidKüçüktopcu, Erdem/Aba-5376-2021
dc.contributor.authorDemirsoy, Husnu
dc.contributor.authorKucuktopcu, Erdem
dc.contributor.authorDogan, Dervis Emre
dc.contributor.authorIDDoğan, Dervi̇ş Emre/0000-0002-7792-9817
dc.contributor.authorIDDemirsoy, Husnu/0000-0001-6621-6347
dc.contributor.authorIDKüçüktopcu, Erdem/0000-0002-8708-2306
dc.date.accessioned2025-12-11T01:27:51Z
dc.date.issued2025
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Demirsoy, Husnu; Dogan, Dervis Emre] Ondokuz Mayis Univ, Fac Agr, Dept Hort, TR-55139 Samsun, Turkiye; [Kucuktopcu, Erdem] Ondokuz Mayis Univ, Fac Agr, Dept Agr Struct & Irrigat, TR-55139 Samsun, Turkiyeen_US
dc.descriptionDoğan, Dervi̇ş Emre/0000-0002-7792-9817; Demirsoy, Husnu/0000-0001-6621-6347; Küçüktopcu, Erdem/0000-0002-8708-2306en_US
dc.description.abstractThis study aims to extend the existing leaf area (LA) models in the literature by introducing four machine learning (ML) models: the extreme learning machine (ELM), k-nearest neighbor algorithm (KNN), random forest (RF), and multilayer perceptron (MLP). The leaf length (L) and width (W) measurements were based on the longest and largest parts of the apple leaf samples. Subsequently, the digital planimeter was utilized to determine the actual LA. Three statistical metrics, namely root mean square error (RMSE), the mean absolute error (MAE), and the coefficient of determination (R2), were used to evaluate and validate the predictive accuracies of models. The results revealed that during the testing phase, the RF model outperformed others in estimating LA in apples, showing an RMSE of 0.924 cm2, MAE of 0.579 cm2, and an R2 of 0.994. Meanwhile, the MLP model displayed slightly lower performance with an RMSE of 2.963 cm2, MAE of 1.866 cm2, and R2 of 0.944. Overall, RF, KNN, and ELM models have showed remarkable efficacy as ML techniques for predicting LA. Their demonstrated effectiveness suggests their potential contribution to future studies within this area.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1007/s10341-025-01292-z
dc.identifier.issn2948-2623
dc.identifier.issn2948-2631
dc.identifier.issue2en_US
dc.identifier.scopus2-s2.0-105000045806
dc.identifier.urihttps://doi.org/10.1007/s10341-025-01292-z
dc.identifier.urihttps://hdl.handle.net/20.500.12712/43946
dc.identifier.volume67en_US
dc.identifier.wosWOS:001441793800002
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofApplied Fruit Scienceen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectArtificial Intelligenceen_US
dc.subjectLa Modelen_US
dc.subjectPomologyen_US
dc.subjectMalus Domesticaen_US
dc.subjectNeural Networksen_US
dc.titleNovel Machine Learning Approaches for Accurate Leaf Area Estimation in Applesen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files