Publication:
Spectroscopy and Machine Learning in Food Processing Survey

dc.authorscopusid58490094400
dc.authorscopusid55174904300
dc.authorscopusid36083903200
dc.contributor.authorMengstu, M.T.
dc.contributor.authorTaner, A.
dc.contributor.authorDuran, H.
dc.date.accessioned2025-12-11T00:32:57Z
dc.date.issued2024
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Mengstu] Mahtem Teweldemedhin, Department of Agricultural Machinery and Technologies Engineering, Ondokuz Mayis Üniversitesi, Samsun, Turkey, Department of Agricultural Engineering, Hamlemlamo Agricultural College, Keren, Eritrea; [Taner] Alper, Department of Agricultural Machinery and Technologies Engineering, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Duran] Huseyin, Department of Agricultural Machinery and Technologies Engineering, Ondokuz Mayis Üniversitesi, Samsun, Turkeyen_US
dc.description.abstractFor food safety, quality control from the foodstuff production to the tasting of foods is needed and should be simple and non-destructive. Recent and notable non-destructive measurements of food and agricultural products are based on optical and spectroscopic techniques. Spectroscopy, meets the requirements of industrial applications for continuous quality control and process monitoring. Hence, this article covers a survey of recent research works, highlighting the application of spectroscopy and machine learning in food processing from bibliographic database. The survey was based on relevant articles, obtained from scientific database and evaluated selected research works based on survey inquires, the assessment included food processing problem addressed (varieties classification, origin identification, adulteration and quality control), types of spectroscopy used, machine learning models applied to solve the particular problem and keyword analysis to show the perspective of the research. © The Authors, published by EDP Sciences.en_US
dc.identifier.doi10.1051/bioconf/20248501022
dc.identifier.isbn9781713838920
dc.identifier.isbn9781713836933
dc.identifier.isbn9781713836414
dc.identifier.isbn9781713866091
dc.identifier.issn2273-1709
dc.identifier.issn2117-4458
dc.identifier.scopus2-s2.0-85183654445
dc.identifier.urihttps://doi.org/10.1051/bioconf/20248501022
dc.identifier.urihttps://hdl.handle.net/20.500.12712/37293
dc.identifier.volume85en_US
dc.language.isoenen_US
dc.publisherEDP Sciencesen_US
dc.relation.ispartofBIO Web of Conferences -- 3rd International Conference on Research of Agricultural and Food Technologies, I-CRAFT 2023 -- 2023-10-04 Through 2023-10-06 -- Adana -- 196444en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.titleSpectroscopy and Machine Learning in Food Processing Surveyen_US
dc.typeConference Objecten_US
dspace.entity.typePublication

Files