Publication: Using Artificial Neural Network and Multiple Linear Regression for Predicting the Chlorophyll Concentration Index of Saint John’s Wort Leaves
| dc.authorscopusid | 21743556600 | |
| dc.authorscopusid | 35781802800 | |
| dc.authorscopusid | 24474284100 | |
| dc.authorscopusid | 25651919200 | |
| dc.contributor.author | Odabaş, M.S. | |
| dc.contributor.author | Kayhan, Gokhan | |
| dc.contributor.author | Ergün, E. | |
| dc.contributor.author | Şenyer, N. | |
| dc.date.accessioned | 2020-06-21T13:39:19Z | |
| dc.date.available | 2020-06-21T13:39:19Z | |
| dc.date.issued | 2016 | |
| dc.department | Ondokuz Mayıs Üniversitesi | en_US |
| dc.department-temp | [Odabaş] Mehmet Serhat, Vocational High School of Bafra, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Kayhan] Gökhan, Department of Computer Engineering, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Ergün] Erhan, Department of Computer Engineering, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Şenyer] Nurettin, Department of Computer Engineering, Ondokuz Mayis Üniversitesi, Samsun, Turkey | en_US |
| dc.description.abstract | This research investigates and compares artificial neural network and multiple linear regression for predicting the chlorophyll concentration index of Saint John’s wort leaves (Hypericum perforatum L.). Plants were fertilized with 0, 30, 60, 90, and 120 kg ha−1 nitrogen [34% nitrogen ammonium nitrate (NH<inf>4</inf>NO<inf>3</inf>)]. Chlorophyll concentration index of each leaf was measured using SPAD meter. Afterwards, rgb (red, green, and blue color) values of all leaf images were determined by image processing. Values obtained were modeled using both multiple regression analysis and artificial neural networks. Using multiple regression analysis R2 values were between 0.61 and 0.97. Coefficient of determination values (R2) using artificial neutral network values were found to be 0.99. Artificial neutral network modeling successfully described the relationship between actual chlorophyll concentration index values and predicted chlorophyll concentration index values. © 2016 Taylor & Francis. | en_US |
| dc.identifier.doi | 10.1080/00103624.2015.1104342 | |
| dc.identifier.endpage | 245 | en_US |
| dc.identifier.issn | 0010-3624 | |
| dc.identifier.issn | 1532-2416 | |
| dc.identifier.issue | 2 | en_US |
| dc.identifier.scopus | 2-s2.0-84955683063 | |
| dc.identifier.scopusquality | Q2 | |
| dc.identifier.startpage | 237 | en_US |
| dc.identifier.uri | https://doi.org/10.1080/00103624.2015.1104342 | |
| dc.identifier.volume | 47 | en_US |
| dc.identifier.wos | WOS:000369274100010 | |
| dc.identifier.wosquality | Q3 | |
| dc.language.iso | en | en_US |
| dc.publisher | Taylor and Francis Inc. 325 Chestnut St, Suite 800 Philadelphia PA 19106 | en_US |
| dc.relation.ispartof | Communications in Soil Science and Plant Analysis | en_US |
| dc.relation.journal | Communications in Soil Science and Plant Analysis | en_US |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Artificial Neural Network | en_US |
| dc.subject | Chlorophyll Concentration Index | en_US |
| dc.subject | Hypericum perforatum L. | en_US |
| dc.subject | Modeling | en_US |
| dc.subject | Precision Agriculture | en_US |
| dc.title | Using Artificial Neural Network and Multiple Linear Regression for Predicting the Chlorophyll Concentration Index of Saint John’s Wort Leaves | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication |
