Publication:
Using Artificial Neural Network and Multiple Linear Regression for Predicting the Chlorophyll Concentration Index of Saint John’s Wort Leaves

dc.authorscopusid21743556600
dc.authorscopusid35781802800
dc.authorscopusid24474284100
dc.authorscopusid25651919200
dc.contributor.authorOdabaş, M.S.
dc.contributor.authorKayhan, Gokhan
dc.contributor.authorErgün, E.
dc.contributor.authorŞenyer, N.
dc.date.accessioned2020-06-21T13:39:19Z
dc.date.available2020-06-21T13:39:19Z
dc.date.issued2016
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Odabaş] Mehmet Serhat, Vocational High School of Bafra, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Kayhan] Gökhan, Department of Computer Engineering, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Ergün] Erhan, Department of Computer Engineering, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Şenyer] Nurettin, Department of Computer Engineering, Ondokuz Mayis Üniversitesi, Samsun, Turkeyen_US
dc.description.abstractThis research investigates and compares artificial neural network and multiple linear regression for predicting the chlorophyll concentration index of Saint John’s wort leaves (Hypericum perforatum L.). Plants were fertilized with 0, 30, 60, 90, and 120 kg ha−1 nitrogen [34% nitrogen ammonium nitrate (NH<inf>4</inf>NO<inf>3</inf>)]. Chlorophyll concentration index of each leaf was measured using SPAD meter. Afterwards, rgb (red, green, and blue color) values of all leaf images were determined by image processing. Values obtained were modeled using both multiple regression analysis and artificial neural networks. Using multiple regression analysis R2 values were between 0.61 and 0.97. Coefficient of determination values (R2) using artificial neutral network values were found to be 0.99. Artificial neutral network modeling successfully described the relationship between actual chlorophyll concentration index values and predicted chlorophyll concentration index values. © 2016 Taylor & Francis.en_US
dc.identifier.doi10.1080/00103624.2015.1104342
dc.identifier.endpage245en_US
dc.identifier.issn0010-3624
dc.identifier.issn1532-2416
dc.identifier.issue2en_US
dc.identifier.scopus2-s2.0-84955683063
dc.identifier.scopusqualityQ2
dc.identifier.startpage237en_US
dc.identifier.urihttps://doi.org/10.1080/00103624.2015.1104342
dc.identifier.volume47en_US
dc.identifier.wosWOS:000369274100010
dc.identifier.wosqualityQ3
dc.language.isoenen_US
dc.publisherTaylor and Francis Inc. 325 Chestnut St, Suite 800 Philadelphia PA 19106en_US
dc.relation.ispartofCommunications in Soil Science and Plant Analysisen_US
dc.relation.journalCommunications in Soil Science and Plant Analysisen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectArtificial Neural Networken_US
dc.subjectChlorophyll Concentration Indexen_US
dc.subjectHypericum perforatum L.en_US
dc.subjectModelingen_US
dc.subjectPrecision Agricultureen_US
dc.titleUsing Artificial Neural Network and Multiple Linear Regression for Predicting the Chlorophyll Concentration Index of Saint John’s Wort Leavesen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files