Publication:
Investigation of Performance of Tropospheric Ozone Estimations in the Industrial Region Using Differential Artificial Neural Networks Methods

dc.authorscopusid20336511300
dc.authorscopusid57201580388
dc.authorscopusid57201584271
dc.contributor.authorAkdemir, A.
dc.contributor.authorFiliz, B.
dc.contributor.authorÖzel Akdemir, Ü.
dc.date.accessioned2020-06-21T13:11:43Z
dc.date.available2020-06-21T13:11:43Z
dc.date.issued2018
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Akdemir] Andaç, Department of Environmental Engineering, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Filiz] B., Department of Environmental Engineering, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Özel Akdemir] Ü, Department of Civil Engineering, Giresun Üniversitesi, Giresun, Giresun, Turkeyen_US
dc.description.abstractThe method of Levenberg-Marquardt learning algorithm was investigated for estimating tropospheric ozone concentration. The Levenberg-Marquardt learning algorithm has 12 input neurons (6 pollutants and 6 meteorological variables), 28 neurons in the hidden layer, and 1 output neuron for the Ozone (O<inf>3</inf>) estimate. The Multilayer Perceptron Model (MLP) performance was found to make good predictions with the mean square error (MSE) less than 1 μg/m3 (0.002 μg/m3). In addition, the correlation coefficient ranges from 0.74 to 0.95 in The Levenberg-Marquardt learning. The Levenberg-Marquardt learning algorithm that a multilayer perception method of Artificial Neural Network (ANN) has performed well and an effective approach for predicting tropospheric ozone. Ozone concentration was influenced predominantly by the nitrogen oxide (NO<inf>x</inf>, NO<inf>2</inf>, NO), SO<inf>2</inf> and temperature. The model did not predict solar radiation to ozone with sufficient accuracy. © 2018 Global NEST Printed in Greece. All rights reserved.en_US
dc.identifier.doi10.30955/gnj.002328
dc.identifier.endpage108en_US
dc.identifier.issn1790-7632
dc.identifier.issue1en_US
dc.identifier.scopus2-s2.0-85045295294
dc.identifier.scopusqualityQ3
dc.identifier.startpage103en_US
dc.identifier.urihttps://doi.org/10.30955/gnj.002328
dc.identifier.volume20en_US
dc.identifier.wosWOS:000428114800013
dc.identifier.wosqualityQ4
dc.language.isoenen_US
dc.publisherGlobal NEST 30 Voulgaroktonou str GR114 72 Athens 11472en_US
dc.relation.ispartofGlobal Nest Journalen_US
dc.relation.journalGlobal Nest Journalen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectANNen_US
dc.subjectLevenberg-Marquardten_US
dc.subjectMLPen_US
dc.subjectOzoneen_US
dc.titleInvestigation of Performance of Tropospheric Ozone Estimations in the Industrial Region Using Differential Artificial Neural Networks Methodsen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files