Publication: Investigation of Performance of Tropospheric Ozone Estimations in the Industrial Region Using Differential Artificial Neural Networks Methods
| dc.authorscopusid | 20336511300 | |
| dc.authorscopusid | 57201580388 | |
| dc.authorscopusid | 57201584271 | |
| dc.contributor.author | Akdemir, A. | |
| dc.contributor.author | Filiz, B. | |
| dc.contributor.author | Özel Akdemir, Ü. | |
| dc.date.accessioned | 2020-06-21T13:11:43Z | |
| dc.date.available | 2020-06-21T13:11:43Z | |
| dc.date.issued | 2018 | |
| dc.department | Ondokuz Mayıs Üniversitesi | en_US |
| dc.department-temp | [Akdemir] Andaç, Department of Environmental Engineering, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Filiz] B., Department of Environmental Engineering, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Özel Akdemir] Ü, Department of Civil Engineering, Giresun Üniversitesi, Giresun, Giresun, Turkey | en_US |
| dc.description.abstract | The method of Levenberg-Marquardt learning algorithm was investigated for estimating tropospheric ozone concentration. The Levenberg-Marquardt learning algorithm has 12 input neurons (6 pollutants and 6 meteorological variables), 28 neurons in the hidden layer, and 1 output neuron for the Ozone (O<inf>3</inf>) estimate. The Multilayer Perceptron Model (MLP) performance was found to make good predictions with the mean square error (MSE) less than 1 μg/m3 (0.002 μg/m3). In addition, the correlation coefficient ranges from 0.74 to 0.95 in The Levenberg-Marquardt learning. The Levenberg-Marquardt learning algorithm that a multilayer perception method of Artificial Neural Network (ANN) has performed well and an effective approach for predicting tropospheric ozone. Ozone concentration was influenced predominantly by the nitrogen oxide (NO<inf>x</inf>, NO<inf>2</inf>, NO), SO<inf>2</inf> and temperature. The model did not predict solar radiation to ozone with sufficient accuracy. © 2018 Global NEST Printed in Greece. All rights reserved. | en_US |
| dc.identifier.doi | 10.30955/gnj.002328 | |
| dc.identifier.endpage | 108 | en_US |
| dc.identifier.issn | 1790-7632 | |
| dc.identifier.issue | 1 | en_US |
| dc.identifier.scopus | 2-s2.0-85045295294 | |
| dc.identifier.scopusquality | Q3 | |
| dc.identifier.startpage | 103 | en_US |
| dc.identifier.uri | https://doi.org/10.30955/gnj.002328 | |
| dc.identifier.volume | 20 | en_US |
| dc.identifier.wos | WOS:000428114800013 | |
| dc.identifier.wosquality | Q4 | |
| dc.language.iso | en | en_US |
| dc.publisher | Global NEST 30 Voulgaroktonou str GR114 72 Athens 11472 | en_US |
| dc.relation.ispartof | Global Nest Journal | en_US |
| dc.relation.journal | Global Nest Journal | en_US |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | ANN | en_US |
| dc.subject | Levenberg-Marquardt | en_US |
| dc.subject | MLP | en_US |
| dc.subject | Ozone | en_US |
| dc.title | Investigation of Performance of Tropospheric Ozone Estimations in the Industrial Region Using Differential Artificial Neural Networks Methods | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication |
