Publication:
Modeling and Optimization of Process Parameters in Co-Composting of Tea Waste and Food Waste: Radial Basis Function Neural Networks and Genetic Algorithm

dc.authorscopusid57884062200
dc.authorscopusid57090524600
dc.authorscopusid57200651210
dc.authorscopusid17436339900
dc.authorwosidTemel, Fulya/U-8361-2018
dc.authorwosidCagcag Yolcu, Ozge/Hlw-7645-2023
dc.contributor.authorYilmaz, Elif Ceren
dc.contributor.authorTemel, Fulya Aydin
dc.contributor.authorYolcu, Ozge Cagcag
dc.contributor.authorTuran, Nurdan Gamze
dc.contributor.authorIDCagcag Yolcu, Ozge/0000-0003-3339-9313
dc.contributor.authorIDAydin Temel, Fulya/0000-0001-8042-9998
dc.date.accessioned2025-12-11T01:14:14Z
dc.date.issued2022
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Yilmaz, Elif Ceren; Turan, Nurdan Gamze] Ondokuz Mayis Univ, Fac Engn, Dept Environm Engn, TR-55200 Samsun, Turkey; [Temel, Fulya Aydin] Giresun Univ, Fac Engn, Dept Environm Engn, TR-28200 Giresun, Turkey; [Yolcu, Ozge Cagcag] Marmara Univ, Fac Sci & Arts, Dept Stat, TR-34722 Istanbul, Turkeyen_US
dc.descriptionCagcag Yolcu, Ozge/0000-0003-3339-9313; Aydin Temel, Fulya/0000-0001-8042-9998;en_US
dc.description.abstractIn this study, the effects of co-composting of food waste (FW) and tea waste (TW) on the losses of total nitrogen (TN), total organic carbon (TOC), and moisture content (MC) were investigated. TW and FW were composted separately and compared with the co-composting of FW and TW at different ratios. While the MC losses were close to each other in all processes, the lowest TN and TOC losses were found in the composting process con-taining 25% TW as 26.80% and 40.11%, respectively. Moreover, Radial Basis Function Neural Networks (RBFNNs) were used to predict the losses of TN, TOC, and MC. The outputs of RBFNN were compared with Response Surface Methodology (RSM), Support Vector Regression (SVR), and Feed Forward Neural Network (FF-NN). In addition, the optimal parameter values were determined by Genetic algorithm (GA). As a result, it will be possible to simulate and improve different co-composting processes with obtained data.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1016/j.biortech.2022.127910
dc.identifier.issn0960-8524
dc.identifier.issn1873-2976
dc.identifier.pmid36087650
dc.identifier.scopus2-s2.0-85137730593
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1016/j.biortech.2022.127910
dc.identifier.urihttps://hdl.handle.net/20.500.12712/42236
dc.identifier.volume363en_US
dc.identifier.wosWOS:000862259400009
dc.identifier.wosqualityQ1
dc.language.isoenen_US
dc.publisherElsevier Sci Ltden_US
dc.relation.ispartofBioresource Technologyen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCompostingen_US
dc.subjectOrganic Wasteen_US
dc.subjectStabilityen_US
dc.subjectMaturityen_US
dc.subjectArtificial Neural Networksen_US
dc.titleModeling and Optimization of Process Parameters in Co-Composting of Tea Waste and Food Waste: Radial Basis Function Neural Networks and Genetic Algorithmen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files