Publication: Modeling and Optimization of Process Parameters in Co-Composting of Tea Waste and Food Waste: Radial Basis Function Neural Networks and Genetic Algorithm
| dc.authorscopusid | 57884062200 | |
| dc.authorscopusid | 57090524600 | |
| dc.authorscopusid | 57200651210 | |
| dc.authorscopusid | 17436339900 | |
| dc.authorwosid | Temel, Fulya/U-8361-2018 | |
| dc.authorwosid | Cagcag Yolcu, Ozge/Hlw-7645-2023 | |
| dc.contributor.author | Yilmaz, Elif Ceren | |
| dc.contributor.author | Temel, Fulya Aydin | |
| dc.contributor.author | Yolcu, Ozge Cagcag | |
| dc.contributor.author | Turan, Nurdan Gamze | |
| dc.contributor.authorID | Cagcag Yolcu, Ozge/0000-0003-3339-9313 | |
| dc.contributor.authorID | Aydin Temel, Fulya/0000-0001-8042-9998 | |
| dc.date.accessioned | 2025-12-11T01:14:14Z | |
| dc.date.issued | 2022 | |
| dc.department | Ondokuz Mayıs Üniversitesi | en_US |
| dc.department-temp | [Yilmaz, Elif Ceren; Turan, Nurdan Gamze] Ondokuz Mayis Univ, Fac Engn, Dept Environm Engn, TR-55200 Samsun, Turkey; [Temel, Fulya Aydin] Giresun Univ, Fac Engn, Dept Environm Engn, TR-28200 Giresun, Turkey; [Yolcu, Ozge Cagcag] Marmara Univ, Fac Sci & Arts, Dept Stat, TR-34722 Istanbul, Turkey | en_US |
| dc.description | Cagcag Yolcu, Ozge/0000-0003-3339-9313; Aydin Temel, Fulya/0000-0001-8042-9998; | en_US |
| dc.description.abstract | In this study, the effects of co-composting of food waste (FW) and tea waste (TW) on the losses of total nitrogen (TN), total organic carbon (TOC), and moisture content (MC) were investigated. TW and FW were composted separately and compared with the co-composting of FW and TW at different ratios. While the MC losses were close to each other in all processes, the lowest TN and TOC losses were found in the composting process con-taining 25% TW as 26.80% and 40.11%, respectively. Moreover, Radial Basis Function Neural Networks (RBFNNs) were used to predict the losses of TN, TOC, and MC. The outputs of RBFNN were compared with Response Surface Methodology (RSM), Support Vector Regression (SVR), and Feed Forward Neural Network (FF-NN). In addition, the optimal parameter values were determined by Genetic algorithm (GA). As a result, it will be possible to simulate and improve different co-composting processes with obtained data. | en_US |
| dc.description.woscitationindex | Science Citation Index Expanded | |
| dc.identifier.doi | 10.1016/j.biortech.2022.127910 | |
| dc.identifier.issn | 0960-8524 | |
| dc.identifier.issn | 1873-2976 | |
| dc.identifier.pmid | 36087650 | |
| dc.identifier.scopus | 2-s2.0-85137730593 | |
| dc.identifier.scopusquality | Q1 | |
| dc.identifier.uri | https://doi.org/10.1016/j.biortech.2022.127910 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12712/42236 | |
| dc.identifier.volume | 363 | en_US |
| dc.identifier.wos | WOS:000862259400009 | |
| dc.identifier.wosquality | Q1 | |
| dc.language.iso | en | en_US |
| dc.publisher | Elsevier Sci Ltd | en_US |
| dc.relation.ispartof | Bioresource Technology | en_US |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Composting | en_US |
| dc.subject | Organic Waste | en_US |
| dc.subject | Stability | en_US |
| dc.subject | Maturity | en_US |
| dc.subject | Artificial Neural Networks | en_US |
| dc.title | Modeling and Optimization of Process Parameters in Co-Composting of Tea Waste and Food Waste: Radial Basis Function Neural Networks and Genetic Algorithm | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication |
