Publication: A Study on the 3D Hopfield Neural Network Model Via Nonlocal Atangana-Baleanu Operators
| dc.authorscopusid | 55935081600 | |
| dc.authorscopusid | 57217132593 | |
| dc.authorscopusid | 16303495600 | |
| dc.authorscopusid | 56594607200 | |
| dc.authorwosid | Erturk, Vedat Suat/Abd-4512-2021 | |
| dc.authorwosid | Etemad, Sina/Aav-8100-2021 | |
| dc.authorwosid | Rezapour, Shahram/N-4883-2016 | |
| dc.authorwosid | Kumar, Pushpendra/Aaa-1223-2021 | |
| dc.contributor.author | Rezapour, Shahram | |
| dc.contributor.author | Kumar, Pushpendra | |
| dc.contributor.author | Erturk, Vedat Suat | |
| dc.contributor.author | Etemad, Sina | |
| dc.contributor.authorID | Etemad, Sina/0000-0002-1574-1800 | |
| dc.contributor.authorID | Kumar, Pushpena/0000-0002-7755-2837 | |
| dc.contributor.authorID | Rezapour, Shahram/0000-0003-3463-2607 | |
| dc.date.accessioned | 2025-12-11T01:29:36Z | |
| dc.date.issued | 2022 | |
| dc.department | Ondokuz Mayıs Üniversitesi | en_US |
| dc.department-temp | [Rezapour, Shahram; Etemad, Sina] Azarbaijan Shahid Madani Univ, Dept Math, Tabriz, Iran; [Rezapour, Shahram] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan; [Kumar, Pushpendra] Cent Univ Punjab, Sch Basic & Appl Sci, Dept Math & Stat, Bathinda 151001, Punjab, India; [Erturk, Vedat Suat] Ondokuz Mayis Univ, Fac Arts & Sci, Dept Math, TR-55200 Atakum, Samsun, Turkey | en_US |
| dc.description | Etemad, Sina/0000-0002-1574-1800; Kumar, Pushpena/0000-0002-7755-2837; Rezapour, Shahram/0000-0003-3463-2607; | en_US |
| dc.description.abstract | Hopfield neural network (HNN) is considered as an artificial model derived from the brain structures and it is an important model that admits an adequate performance in neurocomputing. In this article, we solve a dynamical model of 3D HNNs via Atangana-Baleanu (AB) fractional derivatives. To find the numerical solution of the considered dynamical model, the well-known Predictor-Corrector (PC) method is used. A number of cases are taken by using two different sets of values of the activation gradient of the neurons as well as six different initial conditions. The given results have been perfectly established using the different fractional-order values on the given derivative operator. The objective of this research is to investigate the dynamics of the proposed HNN model at various values of fractional orders. Nonlocal characteristic of the AB derivative contains the memory in the system which is the main motivation behind the proposal of this research. | en_US |
| dc.description.sponsorship | Azarbaijan Shahid Madani University | en_US |
| dc.description.sponsorship | THe first and fourth authors would like to thank Azarbaijan Shahid Madani University. | en_US |
| dc.description.woscitationindex | Science Citation Index Expanded | |
| dc.identifier.doi | 10.1155/2022/6784886 | |
| dc.identifier.issn | 1076-2787 | |
| dc.identifier.issn | 1099-0526 | |
| dc.identifier.scopus | 2-s2.0-85134545955 | |
| dc.identifier.scopusquality | Q1 | |
| dc.identifier.uri | https://doi.org/10.1155/2022/6784886 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12712/44068 | |
| dc.identifier.volume | 2022 | en_US |
| dc.identifier.wos | WOS:000828676800001 | |
| dc.identifier.wosquality | Q2 | |
| dc.language.iso | en | en_US |
| dc.publisher | Wiley-Hindawi | en_US |
| dc.relation.ispartof | Complexity | en_US |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.title | A Study on the 3D Hopfield Neural Network Model Via Nonlocal Atangana-Baleanu Operators | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication |
