Publication:
A Study on the 3D Hopfield Neural Network Model Via Nonlocal Atangana-Baleanu Operators

dc.authorscopusid55935081600
dc.authorscopusid57217132593
dc.authorscopusid16303495600
dc.authorscopusid56594607200
dc.authorwosidErturk, Vedat Suat/Abd-4512-2021
dc.authorwosidEtemad, Sina/Aav-8100-2021
dc.authorwosidRezapour, Shahram/N-4883-2016
dc.authorwosidKumar, Pushpendra/Aaa-1223-2021
dc.contributor.authorRezapour, Shahram
dc.contributor.authorKumar, Pushpendra
dc.contributor.authorErturk, Vedat Suat
dc.contributor.authorEtemad, Sina
dc.contributor.authorIDEtemad, Sina/0000-0002-1574-1800
dc.contributor.authorIDKumar, Pushpena/0000-0002-7755-2837
dc.contributor.authorIDRezapour, Shahram/0000-0003-3463-2607
dc.date.accessioned2025-12-11T01:29:36Z
dc.date.issued2022
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Rezapour, Shahram; Etemad, Sina] Azarbaijan Shahid Madani Univ, Dept Math, Tabriz, Iran; [Rezapour, Shahram] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan; [Kumar, Pushpendra] Cent Univ Punjab, Sch Basic & Appl Sci, Dept Math & Stat, Bathinda 151001, Punjab, India; [Erturk, Vedat Suat] Ondokuz Mayis Univ, Fac Arts & Sci, Dept Math, TR-55200 Atakum, Samsun, Turkeyen_US
dc.descriptionEtemad, Sina/0000-0002-1574-1800; Kumar, Pushpena/0000-0002-7755-2837; Rezapour, Shahram/0000-0003-3463-2607;en_US
dc.description.abstractHopfield neural network (HNN) is considered as an artificial model derived from the brain structures and it is an important model that admits an adequate performance in neurocomputing. In this article, we solve a dynamical model of 3D HNNs via Atangana-Baleanu (AB) fractional derivatives. To find the numerical solution of the considered dynamical model, the well-known Predictor-Corrector (PC) method is used. A number of cases are taken by using two different sets of values of the activation gradient of the neurons as well as six different initial conditions. The given results have been perfectly established using the different fractional-order values on the given derivative operator. The objective of this research is to investigate the dynamics of the proposed HNN model at various values of fractional orders. Nonlocal characteristic of the AB derivative contains the memory in the system which is the main motivation behind the proposal of this research.en_US
dc.description.sponsorshipAzarbaijan Shahid Madani Universityen_US
dc.description.sponsorshipTHe first and fourth authors would like to thank Azarbaijan Shahid Madani University.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1155/2022/6784886
dc.identifier.issn1076-2787
dc.identifier.issn1099-0526
dc.identifier.scopus2-s2.0-85134545955
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1155/2022/6784886
dc.identifier.urihttps://hdl.handle.net/20.500.12712/44068
dc.identifier.volume2022en_US
dc.identifier.wosWOS:000828676800001
dc.identifier.wosqualityQ2
dc.language.isoenen_US
dc.publisherWiley-Hindawien_US
dc.relation.ispartofComplexityen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.titleA Study on the 3D Hopfield Neural Network Model Via Nonlocal Atangana-Baleanu Operatorsen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files