Publication:
Modules That Have a Weak Delta-Supplement in Every Torsion Extension

dc.contributor.authorSozen, Esra Ozturk
dc.contributor.authorEryılmaz, Figen
dc.contributor.authorEren, Senol
dc.date.accessioned2020-06-21T13:27:42Z
dc.date.available2020-06-21T13:27:42Z
dc.date.issued2017
dc.departmentOMÜen_US
dc.department-temp[Sozen, Esra Ozturk] Ondokuz Mayis Univ, Fac Sci & Arts, Dept Math, TR-55139 Samsun, Turkey --en_US
dc.description.abstractWe study modules with the properties (delta-TWE) and (delta-TWEE) which are adopted Zoschinger's modules with the properties (E) and (EE). We call a module (delta-TWE) module if M has a weak delta-supplement in every torsion extension. Similarly if M has ample weak delta-supplements in every torsion extension then M is called (delta-TWEE) module. We obtain various properties of these modules. We will show that (1) Every direct summand of a (delta-TWE) module is a (delta-TWE) module. (2) A module M has the property (delta-TWEE) iff every submodule of M has the property (delta-TWE). (3) Any factor module of a (delta-TWE) module is a (delta-TWE) module under a special condition. (4) Over a non local ring, if every submodule of a module M is a (delta-TWE) module, then it is cofinitely weak delta-supplemented.en_US
dc.identifier.endpage274en_US
dc.identifier.issn1844-9581
dc.identifier.issue2en_US
dc.identifier.startpage269en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12712/12832
dc.identifier.wosWOS:000404867100007
dc.language.isoenen_US
dc.publisherEditura Bibliotheca-Bibliotheca Publ Houseen_US
dc.relation.journalJournal of Science and Artsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDelta-Small Submoduleen_US
dc.subjectWeak Delta-Supplementen_US
dc.subjectTorsion Extensionen_US
dc.titleModules That Have a Weak Delta-Supplement in Every Torsion Extensionen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files