Publication:
DDoS Attack Detection Accuracy Improvement in Software Defined Network (SDN) Using Ensemble Classification

dc.authorscopusid57210467529
dc.authorscopusid57197223215
dc.authorscopusid57533038800
dc.authorscopusid15833929800
dc.contributor.authorShirmarz, A.
dc.contributor.authorGhaffari, A.
dc.contributor.authorMohammadi, R.
dc.contributor.authorAkleylek, S.
dc.date.accessioned2025-12-11T00:27:58Z
dc.date.issued2021
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Shirmarz] Alireza, Dep. of the Faculty of Eng, Ale Taha University., Tehran, Iran; [Ghaffari] Ali, Departmant of Computer Engineering, Islamic Azad University, Tabriz Branch, Tabriz, East Azarbaijan Province, Iran; [Mohammadi] Ramin, Department of Computer Engineering, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Akleylek] Sedat, Department of Computer Engineering, Ondokuz Mayis Üniversitesi, Samsun, Turkeyen_US
dc.description.abstractNowadays, Denial of Service (DOS) is a significant cyberattack that can happen on the Internet. This attack can be taken place with more than one attacker that in this case called Distributed Denial of Service (DDOS). The attackers endeavour to make the resources (server & bandwidth) unavailable to legitimate traffic by overwhelming resources with malicious traffic. An appropriate security module is needed to discriminate the malicious flows with high accuracy to prevent the failure resulting from a DDOS attack. In this paper, a DDoS attack discriminator will be designed for Software Defined Network (SDN) architecture so that it can be deployed in the POX controller. The simulation results present that the proposed model can achieve an accuracy of about 99.4%which shows an outstanding percentage of improvement compared with Decision Tree (DT), K-Nearest Neighbour (KNN), Support Vector Machine (SVM) approaches. © 2021 IEEE.en_US
dc.identifier.doi10.1109/ISCTURKEY53027.2021.9654403
dc.identifier.endpage115en_US
dc.identifier.isbn9781665407762
dc.identifier.scopus2-s2.0-85124383986
dc.identifier.startpage111en_US
dc.identifier.urihttps://doi.org/10.1109/ISCTURKEY53027.2021.9654403
dc.identifier.urihttps://hdl.handle.net/20.500.12712/36472
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof-- 14th International Conference on Information Security and Cryptology, ISCTURKEY 2021 -- 2021-12-02 through 2021-12-03 -- Ankara -- 175906en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAccuracyen_US
dc.subjectDDoS Attacken_US
dc.subjectPOX Controlleren_US
dc.subjectSDNen_US
dc.titleDDoS Attack Detection Accuracy Improvement in Software Defined Network (SDN) Using Ensemble Classificationen_US
dc.typeConference Objecten_US
dspace.entity.typePublication

Files