Publication:
Fractional Time-Delay Mathematical Modeling of Oncolytic Virotherapy

dc.authorscopusid57217132593
dc.authorscopusid16303495600
dc.authorscopusid57193690600
dc.authorscopusid55793190461
dc.authorwosidErturk, Vedat Suat/Abd-4512-2021
dc.authorwosidKumar, Pushpendra/Aaa-1223-2021
dc.authorwosidYusuf, Abdullahi/L-9956-2018
dc.authorwosidKumar, Sunil/P-7519-2015
dc.contributor.authorKumar, Pushpendra
dc.contributor.authorErturk, Vedat Suat
dc.contributor.authorYusuf, Abdullahi
dc.contributor.authorKumar, Sunil
dc.contributor.authorIDKumar, Pushpena/0000-0002-7755-2837
dc.contributor.authorIDKumar, Sunil/0000-0003-0620-1068
dc.date.accessioned2025-12-11T01:19:24Z
dc.date.issued2021
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Kumar, Pushpendra] Cent Univ Punjab, Sch Basic & Appl Sci, Dept Math & Stat, Bathinda 151001, Punjab, India; [Erturk, Vedat Suat] Ondokuz Mayis Univ, Dept Math, TR-55200 Atakum, Samsun, Turkey; [Yusuf, Abdullahi] Biruni Univ Istanbul, Dept Comp Engn, Istanbul, Turkey; [Yusuf, Abdullahi] Fed Univ Dutse, Sci Fac, Dept Math, Jigawa 7156, Nigeria; [Kumar, Sunil] Natl Inst Technol, Dept Math, Jharkhand 831014, Jharkhand, India; [Kumar, Sunil] Ajman Univ, Nonlinear Dynam Res Ctr NDRC, Ajman, U Arab Emiratesen_US
dc.descriptionKumar, Pushpena/0000-0002-7755-2837; Kumar, Sunil/0000-0003-0620-1068en_US
dc.description.abstractAn emerging treatment tool which uses replication-competent viruses to dissipate cancers without causing deficit to normal tissues, named as oncolytic virotherapy, is discussed in the article. We analysed a fractional delay dynamical model on the oncolytic virotherapy compositing viral lytic cycle and virus-specific cytotoxic T lymphocyte (CTL) response. We used a well known Caputo fractional derivative to analyse the structure of the given dynamical model. Using the literature of fixed-point theory, the given time-delay model is specified to have existence of a unique solution. We established different types of graphical simulations for the various values of R-0 and R-1 . We observed a different behaviour of the given fractional model as compare to the integer order model. The given algorithm is smooth in use and reliable to apply on different delay dynamical models. (C) 2021 Elsevier Ltd. All rights reserved.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1016/j.chaos.2021.111123
dc.identifier.issn0960-0779
dc.identifier.issn1873-2887
dc.identifier.scopus2-s2.0-85109163134
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1016/j.chaos.2021.111123
dc.identifier.urihttps://hdl.handle.net/20.500.12712/42846
dc.identifier.volume150en_US
dc.identifier.wosWOS:000683497000014
dc.identifier.wosqualityQ1
dc.language.isoenen_US
dc.publisherPergamon-Elsevier Science Ltden_US
dc.relation.ispartofChaos Solitons & Fractalsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectOncolytic Virotherapyen_US
dc.subjectMathematical Modelen_US
dc.subjectImmune Responseen_US
dc.subjectFractional Delay Differential Equationen_US
dc.subjectCaputo Fractional Derivativeen_US
dc.subjectPredictor-Corrector Schemeen_US
dc.subjectFixed Point Theoryen_US
dc.titleFractional Time-Delay Mathematical Modeling of Oncolytic Virotherapyen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files