Publication: Assisting the Diagnosis of Cirrhosis in Chronic Hepatitis C Patients Based on Machine Learning Algorithms: A Novel Non-Invasive Approach
| dc.authorscopusid | 57210586313 | |
| dc.authorscopusid | 56893368500 | |
| dc.authorscopusid | 8927152600 | |
| dc.authorscopusid | 57209262962 | |
| dc.authorscopusid | 57205266980 | |
| dc.authorscopusid | 51665869400 | |
| dc.authorscopusid | 57219156785 | |
| dc.authorwosid | Kurtaran, Behice/E-9577-2018 | |
| dc.authorwosid | Gunduz, Alper/Hko-5851-2023 | |
| dc.authorwosid | Guner, Rahmet/Kzu-5104-2024 | |
| dc.authorwosid | Kumbasar Karaosmanoglu, Hayat/Agn-5626-2022 | |
| dc.authorwosid | Karabay, Oguz/Hhn-5893-2022 | |
| dc.authorwosid | Yörük, Gülşen/Aba-6097-2020 | |
| dc.authorwosid | Barut, Sener/Lvr-3968-2024 | |
| dc.contributor.author | Dirican, Emre | |
| dc.contributor.author | Bal, Tayibe | |
| dc.contributor.author | Onlen, Yusuf | |
| dc.contributor.author | Sarigul, Figen | |
| dc.contributor.author | User, Ulku | |
| dc.contributor.author | Sari, Nagehan Didem | |
| dc.contributor.author | Tabak, Omer Fehmi | |
| dc.contributor.authorID | Dirican, Emre/0000-0003-3550-1326 | |
| dc.contributor.authorID | Erben, Nurettin/0000-0003-0373-0132 | |
| dc.contributor.authorID | Zerdali, Esra/0000-0002-7023-6639 | |
| dc.date.accessioned | 2025-12-11T01:31:05Z | |
| dc.date.issued | 2025 | |
| dc.department | Ondokuz Mayıs Üniversitesi | en_US |
| dc.department-temp | [Dirican, Emre] Hatay Mustafa Kemal Univ, Fac Med, Dept Biostat, Hatay, Turkiye; [Bal, Tayibe; Onlen, Yusuf] Bolu Abant Izzet Baysal Univ, Fac Med, Dept Infect Dis & Clin Microbiol, Bolu, Turkiye; [Sarigul, Figen; User, Ulku; Oztoprak, Nefise; Inan, Dilara] Akdeniz Univ, Fac Med, Dept Infect Dis & Clin Microbiol, Antalya, Turkiye; [Sari, Nagehan Didem; Yoruk, Gulsen] Hlth Sci Univ, Istanbul Training & Res Hosp, Dept Infect Dis & Clin Microbiol, Istanbul, Turkiye; [Kurtaran, Behice; Komur, Suheyla] Cukurova Univ, Fac Med, Dept Infect Dis & Clin Microbiol, Adana, Turkiye; [Senates, Ebubekir] Medicana Int Istanbul Hosp, Dept Gastroenterol, Istanbul, Turkiye; [Gunduz, Alper] Hlth Sci Univ, Sisli Hamidiye Etfal Training & Res Hosp, Dept Infect Dis & Clin Microbiol, Istanbul, Turkiye; [Zerdali, Esra] Univ Hlth Sci Turkey, Haseki Training & Res Hosp, Dept Infect Dis & Clin Microbiol, Istanbul, Turkiye; [Karsen, Hasan] Harran Univ, Fac Med, Dept Infect Dis & Clin Microbiol, Sanliurfa, Turkiye; [Batirel, Ayse] Hlth Sci Univ, Dr Lutfi Kirdar Kartal Training & Res Hosp, Dept Infect Dis & Clin Microbiol, Istanbul, Turkiye; [Karaali, Ridvan; Tabak, Omer Fehmi] Istanbul Univ Cerrahpasa, Cerrahpasa Fac Med, Dept Infect Dis & Clin Microbiol, Istanbul, Turkiye; [Guner, Hatice Rahmet] Ankara Yildirim Beyazit Univ, Ankara City Hosp, Fac Med, Dept Infect Dis & Clin Microbiol, Ankara, Turkiye; [Yamazhan, Tansu] Ege Univ, Fac Med, Dept Infect Dis & Clin Microbiol, Izmir, Turkiye; [Kose, Sukran; Barut, Sener] Dokuz Eylul Univ, Fac Med, Dept Infect Dis & Clin Microbiol, Izmir, Turkiye; [Erben, Nurettin] Eskisehir Osmangazi Univ, Fac Med, Dept Infect Dis & Clin Microbiol, Eskisehir, Turkiye; [Ince, Nevin Koc] Duzce Univ, Fac Med, Dept Infect Dis & Clin Microbiol, Duzce, Turkiye; [Koksal, Iftihar] Acibadem Univ, Atakent Hosp, Dept Infect Dis & Clin Microbiol, Istanbul, Turkiye; [Kaya, Sibel Yildiz] Istanbul Univ, Cerrahpasa Fac Med, Infect Dis & Clin Microbiol Dept, Cerrahpasa, Turkiye; [Bozkurt, Ilkay] Ondokuz Mayis Univ, Fac Med, Dept Infect Dis & Clin Microbiol, Samsun, Turkiye; [Gunal, Ozgur] Samsun Univ, Fac Med, Dept Infect Dis & Clin Microbiol, Samsun, Turkiye; [Yildiz, Ilknur Esen] Recep Tayyip Erdogan Univ, Fac Med, Dept Infect Dis & Clin Microbiol, Rize, Turkiye; [Namiduru, Mustafa] Gaziantep Univ, Fac Med, Dept Infect Dis & Clin Microbiol, Gaziantep, Turkiye; [Tosun, Selma] Univ Hlth Sci, Izmir Bozyaka Training & Res Hosp, Dept Infect Dis & Clin Microbiol, Izmir, Turkiye; [Turker, Kamuran] Univ Hlth Sci, Okmeydani Training & Res Hosp, Dept Infect Dis & Clin Microbiol, Istanbul, Turkiye; [Sener, Alper] Hlth Sci Univ, Izmir Tepecik Training & Res Hosp, Dept Clin Microbiol & Infect Dis, Izmir, Turkiye; [Hizel, Kenan] Gazi Univ, Fac Med, Dept Infect Dis & Clin Microbiol, Ankara, Turkiye; [Baykam, Nurcan] Hitit Univ, Fac Med, Dept Infect Dis & Clin Microbiol, Corum, Turkiye; [Duygu, Fazilet] Tokat Gaziosmanpasa Univ, Med Fac, Dept Infect Dis & Clin Microbiol, Tokat, Turkiye; [Bodur, Hurrem] Univ Hlth Sci, Ankara City Hosp, Dept Infect Dis & Clin Microbiol, Ankara, Turkiye; [Can, Guray] Abant Izzet Baysal Univ, Fac Med, Dept Gastroenterol, Bolu, Turkiye; [Gul, Hanefi Cem] Hlth Sci Univ, Gulhane Training & Res Hosp, Dept Infect Dis & Clin Microbiol, Ankara, Turkiye; [Tartar, Ayse Sagmak] Firat Univ, Fac Med, Dept Infect Dis & Clin Microbiol, Elazig, Turkiye; [Celebi, Guven] Zonguldak Bulent Ecevit Univ, Fac Med, Dept Infect Dis & Clin Microbiol, Zonguldak, Turkiye; [Sunnetcioglu, Mahmut; Karabay, Oguz] Sakarya Univ, Fac Med, Dept Infect Dis & Clin Microbiol, Sakarya, Turkiye; [Karaosmanoglu, Hayat Kumbasar] Hlth Sci Univ, Bakirkoy Dr Sadi Konuk Training & Res Hosp, Dept Infect Dis & Clin Microbiol, Istanbul, Turkiye; [Sirmatel, Fatma] Izmir Tinaztepe Univ, Fac Med, Div Infect Dis, Dept Internal Med, Izmir, Turkiye | en_US |
| dc.description | Dirican, Emre/0000-0003-3550-1326; Erben, Nurettin/0000-0003-0373-0132; Zerdali, Esra/0000-0002-7023-6639; | en_US |
| dc.description.abstract | Aim: This study aimed to determine the important features and cut-off values after demonstrating the detectability of cirrhosis using routine laboratory test results of chronic hepatitis C (CHC) patients in machine learning (ML) algorithms. Methods: This retrospective multicenter (37 referral centers) study included the data obtained from the Hepatitis C Turkey registry of 1164 patients with biopsy-proven CHC. Three different ML algorithms were used to classify the presence/absence of cirrhosis with the determined features. Results: The highest performance in the prediction of cirrhosis (Accuracy = 0.89, AUC = 0.87) was obtained from the Random Forest (RF) method. The five most important features that contributed to the classification were platelet, alpha lpha-feto protein (AFP), age, gamma-glutamyl transferase (GGT), and prothrombin time (PT). The cut-off values of these features were obtained as platelet < 182.000/mm3, AFP > 5.49 ng/mL, age > 52 years, GGT > 39.9 U/L, and PT > 12.35 s. Using cut-off values, the risk coefficients were AOR = 4.82 for platelet, AOR = 3.49 for AFP, AOR = 4.32 for age, AOR = 3.04 for GGT, and AOR = 2.20 for PT. Conclusion: These findings indicated that the RF-based ML algorithm could classify cirrhosis with high accuracy. Thus, crucial features and cut-off values for physicians in the detection of cirrhosis were determined. In addition, although AFP is not included in non-invasive indexes, it had a remarkable contribution in predicting cirrhosis. Trial Registration: Clinicaltrials.gov identifier: NCT03145844 | en_US |
| dc.description.woscitationindex | Science Citation Index Expanded | |
| dc.identifier.doi | 10.1002/jcla.70054 | |
| dc.identifier.issn | 0887-8013 | |
| dc.identifier.issn | 1098-2825 | |
| dc.identifier.issue | 12 | en_US |
| dc.identifier.pmid | 40384539 | |
| dc.identifier.scopus | 2-s2.0-105005551496 | |
| dc.identifier.scopusquality | Q2 | |
| dc.identifier.uri | https://doi.org/10.1002/jcla.70054 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12712/44248 | |
| dc.identifier.volume | 39 | en_US |
| dc.identifier.wos | WOS:001490437900001 | |
| dc.identifier.wosquality | Q2 | |
| dc.language.iso | en | en_US |
| dc.publisher | Wiley | en_US |
| dc.relation.ispartof | Journal of Clinical Laboratory Analysis | en_US |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Alfa-Feto Protein | en_US |
| dc.subject | Chronic Hepatitis C | en_US |
| dc.subject | Classification | en_US |
| dc.subject | Diagnosis of Cirrhosis | en_US |
| dc.subject | Machine Learning | en_US |
| dc.title | Assisting the Diagnosis of Cirrhosis in Chronic Hepatitis C Patients Based on Machine Learning Algorithms: A Novel Non-Invasive Approach | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication |
