Publication:
Assisting the Diagnosis of Cirrhosis in Chronic Hepatitis C Patients Based on Machine Learning Algorithms: A Novel Non-Invasive Approach

dc.authorscopusid57210586313
dc.authorscopusid56893368500
dc.authorscopusid8927152600
dc.authorscopusid57209262962
dc.authorscopusid57205266980
dc.authorscopusid51665869400
dc.authorscopusid57219156785
dc.authorwosidKurtaran, Behice/E-9577-2018
dc.authorwosidGunduz, Alper/Hko-5851-2023
dc.authorwosidGuner, Rahmet/Kzu-5104-2024
dc.authorwosidKumbasar Karaosmanoglu, Hayat/Agn-5626-2022
dc.authorwosidKarabay, Oguz/Hhn-5893-2022
dc.authorwosidYörük, Gülşen/Aba-6097-2020
dc.authorwosidBarut, Sener/Lvr-3968-2024
dc.contributor.authorDirican, Emre
dc.contributor.authorBal, Tayibe
dc.contributor.authorOnlen, Yusuf
dc.contributor.authorSarigul, Figen
dc.contributor.authorUser, Ulku
dc.contributor.authorSari, Nagehan Didem
dc.contributor.authorTabak, Omer Fehmi
dc.contributor.authorIDDirican, Emre/0000-0003-3550-1326
dc.contributor.authorIDErben, Nurettin/0000-0003-0373-0132
dc.contributor.authorIDZerdali, Esra/0000-0002-7023-6639
dc.date.accessioned2025-12-11T01:31:05Z
dc.date.issued2025
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Dirican, Emre] Hatay Mustafa Kemal Univ, Fac Med, Dept Biostat, Hatay, Turkiye; [Bal, Tayibe; Onlen, Yusuf] Bolu Abant Izzet Baysal Univ, Fac Med, Dept Infect Dis & Clin Microbiol, Bolu, Turkiye; [Sarigul, Figen; User, Ulku; Oztoprak, Nefise; Inan, Dilara] Akdeniz Univ, Fac Med, Dept Infect Dis & Clin Microbiol, Antalya, Turkiye; [Sari, Nagehan Didem; Yoruk, Gulsen] Hlth Sci Univ, Istanbul Training & Res Hosp, Dept Infect Dis & Clin Microbiol, Istanbul, Turkiye; [Kurtaran, Behice; Komur, Suheyla] Cukurova Univ, Fac Med, Dept Infect Dis & Clin Microbiol, Adana, Turkiye; [Senates, Ebubekir] Medicana Int Istanbul Hosp, Dept Gastroenterol, Istanbul, Turkiye; [Gunduz, Alper] Hlth Sci Univ, Sisli Hamidiye Etfal Training & Res Hosp, Dept Infect Dis & Clin Microbiol, Istanbul, Turkiye; [Zerdali, Esra] Univ Hlth Sci Turkey, Haseki Training & Res Hosp, Dept Infect Dis & Clin Microbiol, Istanbul, Turkiye; [Karsen, Hasan] Harran Univ, Fac Med, Dept Infect Dis & Clin Microbiol, Sanliurfa, Turkiye; [Batirel, Ayse] Hlth Sci Univ, Dr Lutfi Kirdar Kartal Training & Res Hosp, Dept Infect Dis & Clin Microbiol, Istanbul, Turkiye; [Karaali, Ridvan; Tabak, Omer Fehmi] Istanbul Univ Cerrahpasa, Cerrahpasa Fac Med, Dept Infect Dis & Clin Microbiol, Istanbul, Turkiye; [Guner, Hatice Rahmet] Ankara Yildirim Beyazit Univ, Ankara City Hosp, Fac Med, Dept Infect Dis & Clin Microbiol, Ankara, Turkiye; [Yamazhan, Tansu] Ege Univ, Fac Med, Dept Infect Dis & Clin Microbiol, Izmir, Turkiye; [Kose, Sukran; Barut, Sener] Dokuz Eylul Univ, Fac Med, Dept Infect Dis & Clin Microbiol, Izmir, Turkiye; [Erben, Nurettin] Eskisehir Osmangazi Univ, Fac Med, Dept Infect Dis & Clin Microbiol, Eskisehir, Turkiye; [Ince, Nevin Koc] Duzce Univ, Fac Med, Dept Infect Dis & Clin Microbiol, Duzce, Turkiye; [Koksal, Iftihar] Acibadem Univ, Atakent Hosp, Dept Infect Dis & Clin Microbiol, Istanbul, Turkiye; [Kaya, Sibel Yildiz] Istanbul Univ, Cerrahpasa Fac Med, Infect Dis & Clin Microbiol Dept, Cerrahpasa, Turkiye; [Bozkurt, Ilkay] Ondokuz Mayis Univ, Fac Med, Dept Infect Dis & Clin Microbiol, Samsun, Turkiye; [Gunal, Ozgur] Samsun Univ, Fac Med, Dept Infect Dis & Clin Microbiol, Samsun, Turkiye; [Yildiz, Ilknur Esen] Recep Tayyip Erdogan Univ, Fac Med, Dept Infect Dis & Clin Microbiol, Rize, Turkiye; [Namiduru, Mustafa] Gaziantep Univ, Fac Med, Dept Infect Dis & Clin Microbiol, Gaziantep, Turkiye; [Tosun, Selma] Univ Hlth Sci, Izmir Bozyaka Training & Res Hosp, Dept Infect Dis & Clin Microbiol, Izmir, Turkiye; [Turker, Kamuran] Univ Hlth Sci, Okmeydani Training & Res Hosp, Dept Infect Dis & Clin Microbiol, Istanbul, Turkiye; [Sener, Alper] Hlth Sci Univ, Izmir Tepecik Training & Res Hosp, Dept Clin Microbiol & Infect Dis, Izmir, Turkiye; [Hizel, Kenan] Gazi Univ, Fac Med, Dept Infect Dis & Clin Microbiol, Ankara, Turkiye; [Baykam, Nurcan] Hitit Univ, Fac Med, Dept Infect Dis & Clin Microbiol, Corum, Turkiye; [Duygu, Fazilet] Tokat Gaziosmanpasa Univ, Med Fac, Dept Infect Dis & Clin Microbiol, Tokat, Turkiye; [Bodur, Hurrem] Univ Hlth Sci, Ankara City Hosp, Dept Infect Dis & Clin Microbiol, Ankara, Turkiye; [Can, Guray] Abant Izzet Baysal Univ, Fac Med, Dept Gastroenterol, Bolu, Turkiye; [Gul, Hanefi Cem] Hlth Sci Univ, Gulhane Training & Res Hosp, Dept Infect Dis & Clin Microbiol, Ankara, Turkiye; [Tartar, Ayse Sagmak] Firat Univ, Fac Med, Dept Infect Dis & Clin Microbiol, Elazig, Turkiye; [Celebi, Guven] Zonguldak Bulent Ecevit Univ, Fac Med, Dept Infect Dis & Clin Microbiol, Zonguldak, Turkiye; [Sunnetcioglu, Mahmut; Karabay, Oguz] Sakarya Univ, Fac Med, Dept Infect Dis & Clin Microbiol, Sakarya, Turkiye; [Karaosmanoglu, Hayat Kumbasar] Hlth Sci Univ, Bakirkoy Dr Sadi Konuk Training & Res Hosp, Dept Infect Dis & Clin Microbiol, Istanbul, Turkiye; [Sirmatel, Fatma] Izmir Tinaztepe Univ, Fac Med, Div Infect Dis, Dept Internal Med, Izmir, Turkiyeen_US
dc.descriptionDirican, Emre/0000-0003-3550-1326; Erben, Nurettin/0000-0003-0373-0132; Zerdali, Esra/0000-0002-7023-6639;en_US
dc.description.abstractAim: This study aimed to determine the important features and cut-off values after demonstrating the detectability of cirrhosis using routine laboratory test results of chronic hepatitis C (CHC) patients in machine learning (ML) algorithms. Methods: This retrospective multicenter (37 referral centers) study included the data obtained from the Hepatitis C Turkey registry of 1164 patients with biopsy-proven CHC. Three different ML algorithms were used to classify the presence/absence of cirrhosis with the determined features. Results: The highest performance in the prediction of cirrhosis (Accuracy = 0.89, AUC = 0.87) was obtained from the Random Forest (RF) method. The five most important features that contributed to the classification were platelet, alpha lpha-feto protein (AFP), age, gamma-glutamyl transferase (GGT), and prothrombin time (PT). The cut-off values of these features were obtained as platelet < 182.000/mm3, AFP > 5.49 ng/mL, age > 52 years, GGT > 39.9 U/L, and PT > 12.35 s. Using cut-off values, the risk coefficients were AOR = 4.82 for platelet, AOR = 3.49 for AFP, AOR = 4.32 for age, AOR = 3.04 for GGT, and AOR = 2.20 for PT. Conclusion: These findings indicated that the RF-based ML algorithm could classify cirrhosis with high accuracy. Thus, crucial features and cut-off values for physicians in the detection of cirrhosis were determined. In addition, although AFP is not included in non-invasive indexes, it had a remarkable contribution in predicting cirrhosis. Trial Registration: Clinicaltrials.gov identifier: NCT03145844en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1002/jcla.70054
dc.identifier.issn0887-8013
dc.identifier.issn1098-2825
dc.identifier.issue12en_US
dc.identifier.pmid40384539
dc.identifier.scopus2-s2.0-105005551496
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.1002/jcla.70054
dc.identifier.urihttps://hdl.handle.net/20.500.12712/44248
dc.identifier.volume39en_US
dc.identifier.wosWOS:001490437900001
dc.identifier.wosqualityQ2
dc.language.isoenen_US
dc.publisherWileyen_US
dc.relation.ispartofJournal of Clinical Laboratory Analysisen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectAlfa-Feto Proteinen_US
dc.subjectChronic Hepatitis Cen_US
dc.subjectClassificationen_US
dc.subjectDiagnosis of Cirrhosisen_US
dc.subjectMachine Learningen_US
dc.titleAssisting the Diagnosis of Cirrhosis in Chronic Hepatitis C Patients Based on Machine Learning Algorithms: A Novel Non-Invasive Approachen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files