Publication:
Dendritic Neuron Model Neural Network Trained by Modified Particle Swarm Optimization for Time-Series Forecasting

dc.authorscopusid57315980900
dc.authorscopusid24282075600
dc.authorwosidYolcu, Ufuk/Jtt-8663-2023
dc.contributor.authorYilmaz, Ayse
dc.contributor.authorYolcu, Ufuk
dc.contributor.authorIDYolcu, Ufuk/0000-0002-0172-3353
dc.date.accessioned2025-12-11T01:12:34Z
dc.date.issued2022
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Yilmaz, Ayse] Ondokuz Mayis Univ, Dept Stat, TR-55200 Samsun, Turkey; [Yolcu, Ufuk] Marmara Univ, Dept Stat, Istanbul, Turkeyen_US
dc.descriptionYolcu, Ufuk/0000-0002-0172-3353en_US
dc.description.abstractDifferent types of artificial neural networks (NNs), such as nonprobabilistic and computation-based time-series forecasting tools, are widely and successfully used in the time-series literature. Whereas some of them use an additive aggregation function, others use a multiplicative aggregation function in the structure of their neuron models. In particular, recently proposed sigma-pi NNs and dendritic NNs have additional and multiplicative neuron models. This study aims to take advantage of the dendritic neuron model neural network (DNM-NN) in forecasting and hence uses the DNM-NN trained by a modified particle swarm optimization as the main contribution of the study optimization in time-series forecasting to improve the forecasting accuracy. To evaluate the forecasting performance of the DNM-NN, the Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX) was analyzed, and the obtained results were discussed together with the results produced by other time-series forecasting models, including traditional, fuzzy-based, and computational-based models.en_US
dc.description.woscitationindexSocial Science Citation Index
dc.identifier.doi10.1002/for.2833
dc.identifier.endpage809en_US
dc.identifier.issn0277-6693
dc.identifier.issn1099-131X
dc.identifier.issue4en_US
dc.identifier.scopus2-s2.0-85118218049
dc.identifier.scopusqualityQ2
dc.identifier.startpage793en_US
dc.identifier.urihttps://doi.org/10.1002/for.2833
dc.identifier.urihttps://hdl.handle.net/20.500.12712/42028
dc.identifier.volume41en_US
dc.identifier.wosWOS:000712374800001
dc.identifier.wosqualityQ1
dc.language.isoenen_US
dc.publisherWileyen_US
dc.relation.ispartofJournal of Forecastingen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDendritic Neuron Modelen_US
dc.subjectForecastingen_US
dc.subjectModified Particle Swarm Optimizationen_US
dc.subjectTAIEXen_US
dc.subjectTime-Seriesen_US
dc.titleDendritic Neuron Model Neural Network Trained by Modified Particle Swarm Optimization for Time-Series Forecastingen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files