Publication:
Identifying Graft Incompatible Rootstocks for Sweet Cherry Through Machine Learning Algorithms

dc.authorscopusid57191538040
dc.authorscopusid12766595200
dc.authorscopusid56146763700
dc.authorscopusid6507259099
dc.authorwosidCengiz, Mehmet/Agz-9391-2022
dc.authorwosidDemirsoy, Husnu/A-9743-2018
dc.contributor.authorAydin, Erol
dc.contributor.authorCengiz, Mehmet Ali
dc.contributor.authorEr, Ercan
dc.contributor.authorDemirsoy, Husnu
dc.date.accessioned2025-12-11T00:42:58Z
dc.date.issued2025
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Aydin, Erol; Er, Ercan] Black Sea Agr Res Inst, Dept Hort, Samsun, Turkiye; [Cengiz, Mehmet Ali] Imam Mohammad Ibn Saud Islamic Univ IMSIU, Coll Sci, Dept Math & Stat, Riyadh, Saudi Arabia; [Demirsoy, Husnu] Ondokuz Mayis Univ, Fac Agr, Dept Hort, Atakum Samsun, Turkiyeen_US
dc.description.abstractGraft incompatibility is a key factor in the development of dwarf and semi dwarf rootstocks for sweet cherry (Prunus avium L.) to improve yield, fruit quality, precocity, and labor efficiency. This study evaluated the graft incompatibility of eight genotypes three sweet cherry, three sour cherry, and two mahaleb collected from Northern Anatolia, a native region for cherries. These genotypes, along with standard rootstocks Gisela 6 and SL 64, were grafted with '0900 Ziraat' and 'Lambert' cultivars. Graft incompatibility was assessed using a multidisciplinary approach combining classical morphological and anatomical evaluations with advanced data driven analyses. Parameters such as graft bud growth rate (40.26-86.21%), shoot length (41.01-91.28 cm), and rootstock/scion diameter ratio (0.41-0.92) were measured 12 months after grafting. Principal Component Analysis, Random Forest modeling with SHAP values, and Bayesian ranking were applied to identify key traits and rank genotype performance. The integrated analysis successfully distinguished compatible rootstock candidates, identifying five genotypes with high compatibility potential. These findings demonstrate that combining traditional phenotypic evaluation methods with machine learning-based approaches offers a robust and comprehensive framework for addressing graft incompatibility, and contributes valuable insights for future breeding programs and rootstock selection strategies in sweet cherry.en_US
dc.description.sponsorshipDeanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University (IMSIU) [IMSIU-DDRSP2502]en_US
dc.description.sponsorshipThis work was supported and funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University (IMSIU) (grant number IMSIU-DDRSP2502).en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1371/journal.pone.0332889
dc.identifier.issn1932-6203
dc.identifier.issue10en_US
dc.identifier.pmid41066318
dc.identifier.scopus2-s2.0-105018237962
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1371/journal.pone.0332889
dc.identifier.urihttps://hdl.handle.net/20.500.12712/38707
dc.identifier.volume20en_US
dc.identifier.wosWOS:001590337100043
dc.identifier.wosqualityQ2
dc.language.isoenen_US
dc.publisherPublic Library Scienceen_US
dc.relation.ispartofPLOS ONEen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.titleIdentifying Graft Incompatible Rootstocks for Sweet Cherry Through Machine Learning Algorithmsen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files