Publication: Prediction of Wear Properties of Graphene-Si3N4 Reinforced Titanium Hybrid Composites by Artificial Neural Network
| dc.authorscopusid | 56020089000 | |
| dc.authorscopusid | 55598954200 | |
| dc.authorscopusid | 56027387100 | |
| dc.authorwosid | Mutuk, Tugba/Aam-9056-2020 | |
| dc.authorwosid | Mutuk, Halil/Hci-7113-2022 | |
| dc.authorwosid | Gürbüz, Mevlüt/Aag-4882-2019 | |
| dc.contributor.author | Mutuk, Tugba | |
| dc.contributor.author | Gurbuz, Mevlut | |
| dc.contributor.author | Mutuk, Halil | |
| dc.contributor.authorID | Mutuk, Tuğba/0000-0003-0143-2721 | |
| dc.date.accessioned | 2025-12-11T01:05:50Z | |
| dc.date.issued | 2020 | |
| dc.department | Ondokuz Mayıs Üniversitesi | en_US |
| dc.department-temp | [Mutuk, Tugba] Ondokuz Mayis Univ, Fac Engn, Dept Met & Mat Sci Engn, TR-55139 Samsun, Turkey; [Gurbuz, Mevlut] Ondokuz Mayis Univ, Fac Engn, Dept Mechn Engn, TR-55139 Samsun, Turkey; [Mutuk, Halil] Ondokuz Mayis Univ, Fac Sci & Letters, Dept Phys, TR-55139 Samsun, Turkey | en_US |
| dc.description | Mutuk, Tuğba/0000-0003-0143-2721; | en_US |
| dc.description.abstract | In this study, we have employed artificial neural network (ANN) method to predict wear properties of titanium hybrid composites produced by powder metallurgy (PM) method. Titanium (Ti) was used as a matrix materials and graphene nano-platelets (GNPs)-Si3N4 were used as reinforcement materials in hybrid composites. A back-propagation neural network with 3-6-1 architecture was developed to predict wear rates by considering weight fraction reinforcements, load and density as model variables. The well trained ANN system predicted the experimental results in a good agreement with the experimental data. This refers that ANN can be used to evaluate wear rate of samples in a cost effective way. | en_US |
| dc.description.woscitationindex | Science Citation Index Expanded | |
| dc.identifier.doi | 10.1088/2053-1591/abaac8 | |
| dc.identifier.issn | 2053-1591 | |
| dc.identifier.issue | 8 | en_US |
| dc.identifier.scopus | 2-s2.0-85090585789 | |
| dc.identifier.scopusquality | Q3 | |
| dc.identifier.uri | https://doi.org/10.1088/2053-1591/abaac8 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12712/41333 | |
| dc.identifier.volume | 7 | en_US |
| dc.identifier.wos | WOS:000561898800001 | |
| dc.identifier.wosquality | Q3 | |
| dc.language.iso | en | en_US |
| dc.publisher | IOP Publishing Ltd | en_US |
| dc.relation.ispartof | Materials Research Express | en_US |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Graphene | en_US |
| dc.subject | Titanium | en_US |
| dc.subject | Si3N4 | en_US |
| dc.subject | Hybrid Composite | en_US |
| dc.subject | Wear Rate | en_US |
| dc.subject | Artificial Neural Network | en_US |
| dc.title | Prediction of Wear Properties of Graphene-Si3N4 Reinforced Titanium Hybrid Composites by Artificial Neural Network | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication |
