Publication:
Prediction of Wear Properties of Graphene-Si3N4 Reinforced Titanium Hybrid Composites by Artificial Neural Network

dc.authorscopusid56020089000
dc.authorscopusid55598954200
dc.authorscopusid56027387100
dc.authorwosidMutuk, Tugba/Aam-9056-2020
dc.authorwosidMutuk, Halil/Hci-7113-2022
dc.authorwosidGürbüz, Mevlüt/Aag-4882-2019
dc.contributor.authorMutuk, Tugba
dc.contributor.authorGurbuz, Mevlut
dc.contributor.authorMutuk, Halil
dc.contributor.authorIDMutuk, Tuğba/0000-0003-0143-2721
dc.date.accessioned2025-12-11T01:05:50Z
dc.date.issued2020
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Mutuk, Tugba] Ondokuz Mayis Univ, Fac Engn, Dept Met & Mat Sci Engn, TR-55139 Samsun, Turkey; [Gurbuz, Mevlut] Ondokuz Mayis Univ, Fac Engn, Dept Mechn Engn, TR-55139 Samsun, Turkey; [Mutuk, Halil] Ondokuz Mayis Univ, Fac Sci & Letters, Dept Phys, TR-55139 Samsun, Turkeyen_US
dc.descriptionMutuk, Tuğba/0000-0003-0143-2721;en_US
dc.description.abstractIn this study, we have employed artificial neural network (ANN) method to predict wear properties of titanium hybrid composites produced by powder metallurgy (PM) method. Titanium (Ti) was used as a matrix materials and graphene nano-platelets (GNPs)-Si3N4 were used as reinforcement materials in hybrid composites. A back-propagation neural network with 3-6-1 architecture was developed to predict wear rates by considering weight fraction reinforcements, load and density as model variables. The well trained ANN system predicted the experimental results in a good agreement with the experimental data. This refers that ANN can be used to evaluate wear rate of samples in a cost effective way.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1088/2053-1591/abaac8
dc.identifier.issn2053-1591
dc.identifier.issue8en_US
dc.identifier.scopus2-s2.0-85090585789
dc.identifier.scopusqualityQ3
dc.identifier.urihttps://doi.org/10.1088/2053-1591/abaac8
dc.identifier.urihttps://hdl.handle.net/20.500.12712/41333
dc.identifier.volume7en_US
dc.identifier.wosWOS:000561898800001
dc.identifier.wosqualityQ3
dc.language.isoenen_US
dc.publisherIOP Publishing Ltden_US
dc.relation.ispartofMaterials Research Expressen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectGrapheneen_US
dc.subjectTitaniumen_US
dc.subjectSi3N4en_US
dc.subjectHybrid Compositeen_US
dc.subjectWear Rateen_US
dc.subjectArtificial Neural Networken_US
dc.titlePrediction of Wear Properties of Graphene-Si3N4 Reinforced Titanium Hybrid Composites by Artificial Neural Networken_US
dc.typeArticleen_US
dspace.entity.typePublication

Files