Publication:
Prediction of Higher Heating Value of Biochars Using Proximate Analysis by Artificial Neural Network

dc.authorscopusid57205605969
dc.authorscopusid56663216400
dc.authorscopusid7003728792
dc.authorwosidÇakman, Gülce/Abd-8667-2020
dc.authorwosidCeylan, Selim/Lsj-5591-2024
dc.contributor.authorÇakman, Gülce
dc.contributor.authorGheni, Saba
dc.contributor.authorCeylan, Selim
dc.contributor.authorIDGheni, Saba/0000-0002-8210-2371
dc.date.accessioned2025-12-11T01:02:30Z
dc.date.issued2024
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Cakman, Gulce; Ceylan, Selim] Ondokuz Mayis Univ, Fac Engn, Dept Chem Engn, TR-55139 Samsun, Turkiye; [Gheni, Saba] Tikrit Univ, Fac Engn, Chem Engn Dept, Tikrit 34001, Iraqen_US
dc.descriptionGheni, Saba/0000-0002-8210-2371;en_US
dc.description.abstractThe biochars obtained from the pyrolysis of biomass at different conditions have the potential to be used as biofuels. Thus, as a critical fuel property, the higher heating value (HHV) of biochars must be determined to decide on their application area. However, oxygen bomb calorimeters that are employed for HHV determination are expensive. Also, analysis is time-consuming, needs specialists, and can suffer from experimental errors. Although some model equations are available for solid fuels (biomass, coal, etc.) to calculate HHV, biochar has different properties, and a new model is required. This study aims to form an artificial neural network (ANN) model in order to estimate HHV of biochars by using simple proximate analysis data of 129 different biochars. The experimental and the predicted model results showed good agreement that the ANN model presented the highest regression coefficient of 0.9651 and the lowest mean absolute deviation of 0.5569 among all models previously reported in the literature.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1007/s13399-021-01358-4
dc.identifier.endpage5997en_US
dc.identifier.issn2190-6815
dc.identifier.issn2190-6823
dc.identifier.issue5en_US
dc.identifier.scopus2-s2.0-85100998497
dc.identifier.scopusqualityQ2
dc.identifier.startpage5989en_US
dc.identifier.urihttps://doi.org/10.1007/s13399-021-01358-4
dc.identifier.urihttps://hdl.handle.net/20.500.12712/40871
dc.identifier.volume14en_US
dc.identifier.wosWOS:000618712900002
dc.identifier.wosqualityQ2
dc.language.isoenen_US
dc.publisherSpringer Heidelbergen_US
dc.relation.ispartofBiomass Conversion and Biorefineryen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBiocharen_US
dc.subjectPredictionen_US
dc.subjectHigher Heating Value (HHV)en_US
dc.subjectArtificial Neural Network (ANN)en_US
dc.titlePrediction of Higher Heating Value of Biochars Using Proximate Analysis by Artificial Neural Networken_US
dc.typeArticleen_US
dspace.entity.typePublication

Files