Publication:
Data-Driven Estimation of Reference Evapotranspiration in Paraguay from Geographical and Temporal Predictors

dc.authorscopusid55976027400
dc.authorscopusid56541733100
dc.authorscopusid60189487400
dc.authorscopusid57197005919
dc.authorwosidSimsek, Halis/Gnm-6269-2022
dc.authorwosidCemek, Bilal/Aaz-7757-2020
dc.authorwosidKüçüktopçu, Erdem/Aba-5376-2021
dc.contributor.authorCemek, Bilal
dc.contributor.authorKucuktopcu, Erdem
dc.contributor.authorFleitas Ortellado, Maria Gabriela
dc.contributor.authorSimsek, Halis
dc.date.accessioned2025-12-11T00:47:01Z
dc.date.issued2025
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Cemek, Bilal; Kucuktopcu, Erdem; Fleitas Ortellado, Maria Gabriela] Ondokuz Mayis Univ, Dept Agr Struct & Irrigat, TR-55139 Samsun, Turkiye; [Simsek, Halis] Purdue Univ, Dept Agr & Biol Engn, W Lafayette, IN 47907 USAen_US
dc.description.abstractReference evapotranspiration (ET0) is a fundamental variable for irrigation scheduling and water management. Conventional estimation methods, such as the FAO-56 Penman-Monteith equation, are of limited use in developing regions where meteorological data are scarce. This study evaluates the potential of machine learning (ML) approaches to estimate ET0 in Paraguay, using only geographical and temporal predictors-latitude, longitude, altitude, and month. Five algorithms were tested: artificial neural networks (ANNs), k-nearest neighbors (KNN), random forest (RF), extreme gradient boosting (XGB), and adaptive neuro-fuzzy inference systems (ANFISs). The framework consisted of ET0 calculation, baseline model testing (ML techniques), ensemble modeling, leave-one-station-out validation, and spatial interpolation by inverse distance weighting. ANFIS achieved the highest prediction accuracy (R2 = 0.950, RMSE = 0.289 mm day-1, MAE = 0.202 mm day-1), while RF and XGB showed stable and reliable performance across all stations. Spatial maps highlighted strong seasonal variability, with higher ET0 values in the Chaco region in summer and lower values in winter. These results confirm that ML algorithms can generate robust ET0 estimates under data-constrained conditions, and provide scalable and cost-effective solutions for irrigation management and agricultural planning in Paraguay.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.3390/app152111429
dc.identifier.issn2076-3417
dc.identifier.issue21en_US
dc.identifier.scopus2-s2.0-105021455958
dc.identifier.scopusqualityQ3
dc.identifier.urihttps://doi.org/10.3390/app152111429
dc.identifier.urihttps://hdl.handle.net/20.500.12712/39196
dc.identifier.volume15en_US
dc.identifier.wosWOS:001612490900001
dc.identifier.wosqualityQ2
dc.language.isoenen_US
dc.publisherMDPIen_US
dc.relation.ispartofApplied Sciences-Baselen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectReference Evapotranspirationen_US
dc.subjectMachine Learningen_US
dc.subjectGeographical Variablesen_US
dc.subjectEnsemble Modelingen_US
dc.subjectSpatial Interpolationen_US
dc.titleData-Driven Estimation of Reference Evapotranspiration in Paraguay from Geographical and Temporal Predictorsen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files