Publication:
Forecasting in High Order Fuzzy Times Series by Using Neural Networks to Define Fuzzy Relations

dc.authorscopusid23092915500
dc.authorscopusid57211930065
dc.authorscopusid23093703600
dc.authorscopusid24282075600
dc.authorscopusid24282155300
dc.contributor.authorAladag, C.H.
dc.contributor.authorBaşaran, M.A.
dc.contributor.authorEgrioglu, E.
dc.contributor.authorYolcu, U.
dc.contributor.authorUslu, V.R.
dc.date.accessioned2020-06-21T15:06:47Z
dc.date.available2020-06-21T15:06:47Z
dc.date.issued2009
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Aladag] Cagdas Hakan, Department of Statistics, Hacettepe Üniversitesi, Ankara, Turkey; [Başaran] Murat Alper, Department of Mathematics, Niğde Ömer Halisdemir University, Nigde, Nigde, Turkey; [Egrioglu] Erol, Department of Statistics, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Yolcu] Ufuk, Department of Statistics, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Uslu] Vedide Rezan, Department of Statistics, Ondokuz Mayis Üniversitesi, Samsun, Turkeyen_US
dc.description.abstractA given observation in time series does not only depend on preceding one but also previous ones in general. Therefore, high order fuzzy time series approach might obtain better forecasts than does first order fuzzy time series approach. Defining fuzzy relation in high order fuzzy time series approach are more complicated than that in first order fuzzy time series approach. A new proposed approach, which uses feed forward neural networks to define fuzzy relation in high order fuzzy time series, is introduced in this paper. The new proposed approach is applied to well-known enrollment data for the University of Alabama and obtained results are compared with other methods proposed in the literature. It is found that the proposed method produces better forecasts than the other methods. © 2008 Elsevier Ltd. All rights reserved.en_US
dc.identifier.doi10.1016/j.eswa.2008.04.001
dc.identifier.endpage4231en_US
dc.identifier.issn0957-4174
dc.identifier.scopus2-s2.0-58349090456
dc.identifier.scopusqualityQ1
dc.identifier.startpage4228en_US
dc.identifier.urihttps://doi.org/10.1016/j.eswa.2008.04.001
dc.identifier.volume36en_US
dc.identifier.wosWOS:000263584100009
dc.identifier.wosqualityQ1
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.relation.ispartofExpert Systems with Applicationsen_US
dc.relation.journalExpert Systems With Applicationsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectForecastingen_US
dc.subjectFuzzy Relationen_US
dc.subjectFuzzy Seten_US
dc.subjectHigh Order Fuzzy Time Seriesen_US
dc.subjectNeural Networksen_US
dc.titleForecasting in High Order Fuzzy Times Series by Using Neural Networks to Define Fuzzy Relationsen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files