Publication:
On the Convergence and Stability Analysis of Finite-Difference Methods for the Fractional Newell-Whitehead Equations

dc.authorscopusid56426587000
dc.authorscopusid57893778300
dc.authorwosidÇilingir Süngü, Inci/A-8346-2018
dc.authorwosidCilingir Sungu, Inci/A-8346-2018
dc.contributor.authorCilingir Sungu, Inci
dc.contributor.authorAydin, Emre
dc.contributor.authorIDAydin, Emre/0000-0001-7480-0965
dc.contributor.authorIDCilingir Sungu, Inci/0000-0001-7788-181X
dc.date.accessioned2025-12-11T01:15:20Z
dc.date.issued2022
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Cilingir Sungu, Inci] Univ Ondokuz Mayis, Educ Fac, Dept Math Educ, Samsun, Turkey; [Aydin, Emre] Univ Ondokuz Mayis, Inst Grad Educ, Dept Math, Samsun, Turkeyen_US
dc.descriptionAydin, Emre/0000-0001-7480-0965; Cilingir Sungu, Inci/0000-0001-7788-181Xen_US
dc.description.abstractIn this study, standard and non-standard finite-difference methods are proposed for numerical solutions of the time-spatial fractional generalized Newell-Whitehead-Segel equations describing the dynamical behavior near the bifurcation point of the Rayleigh-Benard convection of binary fluid mixtures. The numerical solutions have been found for high values of p which shows the degree of nonlinear terms in the equations. The stability and convergence conditions of the obtained difference schemes are determined for each value of p. Errors of methods for various values of p are given in tables. The compatibility of exact solutions and numerical solutions and the effectiveness of the methods are interpreted with the help of tables and graphics. It can be said that not only standard and non-standard finite-difference methods are feasible and effective methods to solve the given equation numerically but also useful in terms of computational cost and memory.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.55730/1300-0098.3302
dc.identifier.endpage2818en_US
dc.identifier.issn1300-0098
dc.identifier.issn1303-6149
dc.identifier.issue7en_US
dc.identifier.scopus2-s2.0-85138216259
dc.identifier.scopusqualityQ2
dc.identifier.startpage2806en_US
dc.identifier.trdizinid1142886
dc.identifier.urihttps://doi.org/10.55730/1300-0098.3302
dc.identifier.urihttps://search.trdizin.gov.tr/en/yayin/detay/1142886/on-the-convergence-and-stability-analysis-of-finite-difference-methods-for-the-fractional-newell-whitehead-segel-equations
dc.identifier.urihttps://hdl.handle.net/20.500.12712/42371
dc.identifier.volume46en_US
dc.identifier.wosWOS:000888592500016
dc.identifier.wosqualityQ2
dc.language.isoenen_US
dc.publisherTÜBİTAK Scientific & Technological Research Council Turkeyen_US
dc.relation.ispartofTurkish Journal of Mathematicsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectGeneralized Newell-Whitehead-Segel Equation (GNWs)en_US
dc.subjectStandard Finite-Difference Method (SFDM)en_US
dc.subjectNon-Standarden_US
dc.subjectFinite-Difference Method (NSFDM)en_US
dc.subjectCFL Conditionsen_US
dc.titleOn the Convergence and Stability Analysis of Finite-Difference Methods for the Fractional Newell-Whitehead Equationsen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files