Publication:
A New Hybrid Neural Network Classifier Based on Adaptive Neuron and Multiplicative Neuron

dc.authorscopusid57093934400
dc.authorscopusid55543036300
dc.authorwosidTunc, Taner/G-5073-2016
dc.authorwosidKolay, Erdinç/Kpa-7756-2024
dc.authorwosidKolay, Erdinc/Kpa-7756-2024
dc.contributor.authorKolay, Erdinc
dc.contributor.authorTunc, Taner
dc.contributor.authorIDTunç, Taner/0000-0002-5548-8475
dc.contributor.authorIDKolay, Erdinç/0000-0001-7436-3152
dc.date.accessioned2025-12-11T01:19:00Z
dc.date.issued2023
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Kolay, Erdinc] Sinop Univ, Dept Stat, Sinop, Turkey; [Tunc, Taner] Ondokuz Mayis Univ, Dept Stat, Samsun, Turkeyen_US
dc.descriptionTunç, Taner/0000-0002-5548-8475; Kolay, Erdinç/0000-0001-7436-3152;en_US
dc.description.abstractNeural network (NN) classifiers are very popular tools for solving classification tasks. Mostly known NN classifier is a multilayer perceptron (MLP). Although MLP has a good correct classification ratio, its structure could be very complex and network training may work for a long time. Pi-sigma NN (PSNN) is higher-order NN (HONN), which used higher-order correlations among the input components to establish a HONN, and the PSNN utilizes the product of neurons as the output units. By contrast with MLP and PSNN, single multiplicative neuron (SMN) is simple concerning its structure and mathematical model. The absence of the hidden layer(s) could be an advantage for easy implementation, and the mathematical model can be easily interpreted. In this paper, we propose a new hybrid NN classifier based on simple adaptive neurons and SMN which form the SMN as a whole, where input units are constituted by adaptive neurons. In contrast with conventional NN, our proposed classifier can use fewer learning parameters. To train this network, we use a modified particle swarm optimization (MPSO) algorithm. For the investigation of the generalization capability of the proposed classifier, we compare this method to other NN classifiers: MLP and PSNN together with other classification procedure classifiers.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1007/s00500-021-06093-6
dc.identifier.endpage1808en_US
dc.identifier.issn1432-7643
dc.identifier.issn1433-7479
dc.identifier.issue3en_US
dc.identifier.scopus2-s2.0-85112593337
dc.identifier.scopusqualityQ1
dc.identifier.startpage1797en_US
dc.identifier.urihttps://doi.org/10.1007/s00500-021-06093-6
dc.identifier.urihttps://hdl.handle.net/20.500.12712/42808
dc.identifier.volume27en_US
dc.identifier.wosWOS:000682428800001
dc.identifier.wosqualityQ3
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofSoft Computingen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectClassificationen_US
dc.subjectMultilayer Perceptronen_US
dc.subjectPi-Sigma Neural Networken_US
dc.subjectMultiplicative Neuronen_US
dc.subjectParticle Swarm Optimizationen_US
dc.titleA New Hybrid Neural Network Classifier Based on Adaptive Neuron and Multiplicative Neuronen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files