Publication:
Variable Selection in Gamma Regression Models via Artificial Bee Colony Algorithm

dc.authorscopusid57191925575
dc.authorscopusid57191918830
dc.authorscopusid12766595200
dc.contributor.authorDunder, E.
dc.contributor.authorGumustekin, S.
dc.contributor.authorCengiz, M.A.
dc.date.accessioned2020-06-21T13:12:22Z
dc.date.available2020-06-21T13:12:22Z
dc.date.issued2018
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Dunder] Emre, Department of Statistics, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Gumustekin] Serpil, Department of Statistics, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Cengiz] Mehmet Ali, Department of Statistics, Ondokuz Mayis Üniversitesi, Samsun, Turkeyen_US
dc.description.abstractVariable selection is an important task in regression analysis. Performance of the statistical model highly depends on the determination of the subset of predictors. There are several methods to select most relevant variables to construct a good model. However in practice, the dependent variable may have positive continuous values and not normally distributed. In such situations, gamma distribution is more suitable than normal for building a regression model. This paper introduces an heuristic approach to perform variable selection using artificial bee colony optimization for gamma regression models. We evaluated the proposed method against with classical selection methods such as backward and stepwise. Both simulation studies and real data set examples proved the accuracy of our selection procedure. © 2016 Informa UK Limited, trading as Taylor & Francis Group.en_US
dc.identifier.doi10.1080/02664763.2016.1254730
dc.identifier.endpage16en_US
dc.identifier.issn0266-4763
dc.identifier.issn1360-0532
dc.identifier.issue1en_US
dc.identifier.scopus2-s2.0-84994824107
dc.identifier.scopusqualityQ2
dc.identifier.startpage8en_US
dc.identifier.urihttps://doi.org/10.1080/02664763.2016.1254730
dc.identifier.volume45en_US
dc.identifier.wosWOS:000415929600002
dc.identifier.wosqualityQ3
dc.language.isoenen_US
dc.publisherTaylor and Francis Ltd. michael.wagreich@univie.ac.aten_US
dc.relation.ispartofJournal of Applied Statisticsen_US
dc.relation.journalJournal of Applied Statisticsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectArtificial Bee Colony Algorithmen_US
dc.subjectGamma Regression Analysisen_US
dc.subjectHeuristic Optimizationen_US
dc.subjectR-Projecten_US
dc.subjectVariable Selectionen_US
dc.titleVariable Selection in Gamma Regression Models via Artificial Bee Colony Algorithmen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files