Publication:
Time-Series Forecasting with a Novel Fuzzy Time-Series Approach: An Example for Istanbul Stock Market

dc.authorscopusid24282075600
dc.authorscopusid23092915500
dc.authorscopusid23093703600
dc.authorscopusid24282155300
dc.contributor.authorYolcu, U.
dc.contributor.authorAladag, C.H.
dc.contributor.authorEgrioglu, E.
dc.contributor.authorUslu, V.R.
dc.date.accessioned2020-06-21T14:05:59Z
dc.date.available2020-06-21T14:05:59Z
dc.date.issued2013
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Yolcu] Ufuk, Department of Statistics, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Aladag] Cagdas Hakan, Department of Statistics, Hacettepe Üniversitesi, Ankara, Turkey; [Egrioglu] Erol, Department of Statistics, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Uslu] Vedide Rezan, Department of Statistics, Ondokuz Mayis Üniversitesi, Samsun, Turkeyen_US
dc.description.abstractArtificial intelligence procedures such as artificial neural networks (ANNs), genetic algorithms and particle swarm optimization and other procedures such as fuzzy clustering have been successfully used in the various stages of different fuzzy time-series forecasting approaches. Fuzzy clustering, genetic algorithm and particle swarm optimization are generally used in the fuzzification stage, and this simplifies the applicability of this stage and makes the fuzzy time-series approach more systematic. ANNs have also been applied successfully in the fuzzy relationship determination stage. In this study, we propose a new hybrid fuzzy time-series approach in which fuzzy c-means clustering procedure is employed in the fuzzification stage and feed-forward neural networks are used in the fuzzy relationship determination stage. This study also includes an empirical analysis pertaining to the forecasting of Index 100 for the stocks and bonds exchange market of Istanbul. © 2013 Copyright Taylor and Francis Group, LLC.en_US
dc.identifier.doi10.1080/00949655.2011.630000
dc.identifier.endpage612en_US
dc.identifier.issn0094-9655
dc.identifier.issn1563-5163
dc.identifier.issue4en_US
dc.identifier.scopus2-s2.0-84864746036
dc.identifier.scopusqualityQ3
dc.identifier.startpage599en_US
dc.identifier.urihttps://doi.org/10.1080/00949655.2011.630000
dc.identifier.volume83en_US
dc.identifier.wosWOS:000317276900001
dc.identifier.wosqualityQ2
dc.language.isoenen_US
dc.publisherTaylor and Francis Ltd. michael.wagreich@univie.ac.aten_US
dc.relation.ispartofJournal of Statistical Computation and Simulationen_US
dc.relation.journalJournal of Statistical Computation and Simulationen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDefuzzificationen_US
dc.subjectFeed-Forward Neural Networksen_US
dc.subjectFuzzificationen_US
dc.subjectFuzzy C-Means Clusteringen_US
dc.subjectFuzzy Relationshipen_US
dc.subjectFuzzy Time Seriesen_US
dc.titleTime-Series Forecasting with a Novel Fuzzy Time-Series Approach: An Example for Istanbul Stock Marketen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files