Publication:
A Novel Permission-Based Android Malware Detection System Using Feature Selection Based on Linear Regression

dc.authorscopusid56589621700
dc.authorscopusid57190738698
dc.authorscopusid15833929800
dc.authorscopusid22953804000
dc.authorwosidKiliç, Erdal/Hjy-2853-2023
dc.authorwosidSahin, Durmus/Aaj-7961-2020
dc.authorwosidAkleylek, Sedat/D-2090-2015
dc.contributor.authorSahin, Durmus Ozkan
dc.contributor.authorKural, Oguz Emre
dc.contributor.authorAkleylek, Sedat
dc.contributor.authorKilic, Erdal
dc.contributor.authorIDKiliç, Erdal/0000-0003-1585-0991
dc.date.accessioned2025-12-11T01:04:22Z
dc.date.issued2023
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Sahin, Durmus Ozkan; Kural, Oguz Emre; Akleylek, Sedat; Kilic, Erdal] Ondokuz Mayis Univ, Dept Comp Engn, Fac Engn, Atakum, Samsun, Turkeyen_US
dc.descriptionKiliç, Erdal/0000-0003-1585-0991;en_US
dc.description.abstractWith the developments in mobile and wireless technology, mobile devices have become an important part of our lives. While Android is the leading operating system in market share, it is the platform most targeted by attackers. Although many solutions have been proposed in the literature for the detection of Android malware, there is still a need for attribute selection methods to be used in Android malware detection systems. In this study, a machine learning-based malware detection system is proposed to distinguish Android malware from benign applications. At the feature selection stage of the proposed malware detection system, it is aimed to remove unnecessary features by using a linear regression-based feature selection approach. In this way, the dimension of the feature vector is reduced, the training time is decreased, and the classification model can be used in real-time malware detection systems. When the results of the study are examined, the highest 0.961 is obtained according to the F-measure metric by using at least 27 features.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1007/s00521-021-05875-1
dc.identifier.endpage4918en_US
dc.identifier.issn0941-0643
dc.identifier.issn1433-3058
dc.identifier.issue7en_US
dc.identifier.scopus2-s2.0-85103187505
dc.identifier.scopusqualityQ1
dc.identifier.startpage4903en_US
dc.identifier.urihttps://doi.org/10.1007/s00521-021-05875-1
dc.identifier.urihttps://hdl.handle.net/20.500.12712/41111
dc.identifier.volume35en_US
dc.identifier.wosWOS:000630675700004
dc.language.isoenen_US
dc.publisherSpringer London Ltden_US
dc.relation.ispartofNeural Computing and Applicationsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAndroid Malwareen_US
dc.subjectMalware Detectionen_US
dc.subjectFeature Selectionen_US
dc.subjectStatic Analysisen_US
dc.subjectMachine Learningen_US
dc.subjectLinear Regressionen_US
dc.titleA Novel Permission-Based Android Malware Detection System Using Feature Selection Based on Linear Regressionen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files