Publication:
A Novel Fractional-Order Cascade Tri-Neuron Hopfield Neural Network: Stability, Bifurcations, and Chaos

dc.authorscopusid57217132593
dc.authorscopusid56678696600
dc.authorscopusid16303495600
dc.authorwosidKumar, Pushpendra/Aaa-1223-2021
dc.authorwosidErturk, Vedat Suat/Abd-4512-2021
dc.contributor.authorKumar, Pushpendra
dc.contributor.authorLee, Tae H.
dc.contributor.authorErturk, Vedat Suat
dc.contributor.authorIDKumar, Pushpena/0000-0002-7755-2837
dc.date.accessioned2025-12-11T01:05:00Z
dc.date.issued2024
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Kumar, Pushpendra; Lee, Tae H.] Jeonbuk Natl Univ, Div Elect Engn, Jeonju Si 54896, South Korea; [Erturk, Vedat Suat] Ondokuz Mayis Univ, Fac Arts & Sci, Dept Math, TR-55200 Samsun, Turkiyeen_US
dc.descriptionKumar, Pushpena/0000-0002-7755-2837;en_US
dc.description.abstractIn this paper, we propose a novel Caputo-type fractional-order cascade tri-neuron Hopfield neural network (HNN) taking no connection between the first and third neuron. We analyse the symmetry and dissipativity of the system using divergence and transformations. The stability of the equilibrium points is checked by fixing the synaptic weights. To further analyse the dynamics of the HNN system, we derive a numerical solution by using the Adams-Bashforth-Moulton method along with its stability analysis. We performed several graphical simulations, considering two synaptic weights as adjustable variables, and explored the fact that the HNN system shows various periodic and chaotic attractors. The reason for proposing a fractional-order HNN is that such a system has limitless memory, which can improve the system's controllability for a wide range of real-world phenomena with important applications. Also, the proposed fractional-order HNN shows better convergence compared to the integer-order case.en_US
dc.description.sponsorshipNational Research Foundation of Korea (NRF) - Korea government (MSIT) [RS-2023-00210401]en_US
dc.description.sponsorshipThis work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. RS-2023-00210401).en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1007/s12346-024-01096-8
dc.identifier.issn1575-5460
dc.identifier.issn1662-3592
dc.identifier.issue5en_US
dc.identifier.scopus2-s2.0-85198045859
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.1007/s12346-024-01096-8
dc.identifier.urihttps://hdl.handle.net/20.500.12712/41196
dc.identifier.volume23en_US
dc.identifier.wosWOS:001268327800001
dc.identifier.wosqualityQ1
dc.language.isoenen_US
dc.publisherSpringer Basel AGen_US
dc.relation.ispartofQualitative Theory of Dynamical Systemsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectHopfield Neural Networken_US
dc.subjectCaputo Fractional Derivativeen_US
dc.subjectStabilityen_US
dc.subjectBifurcationsen_US
dc.subjectChaosen_US
dc.subjectAdams-Bashforth Methoden_US
dc.titleA Novel Fractional-Order Cascade Tri-Neuron Hopfield Neural Network: Stability, Bifurcations, and Chaosen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files