Publication: A Novel Fractional-Order Cascade Tri-Neuron Hopfield Neural Network: Stability, Bifurcations, and Chaos
| dc.authorscopusid | 57217132593 | |
| dc.authorscopusid | 56678696600 | |
| dc.authorscopusid | 16303495600 | |
| dc.authorwosid | Kumar, Pushpendra/Aaa-1223-2021 | |
| dc.authorwosid | Erturk, Vedat Suat/Abd-4512-2021 | |
| dc.contributor.author | Kumar, Pushpendra | |
| dc.contributor.author | Lee, Tae H. | |
| dc.contributor.author | Erturk, Vedat Suat | |
| dc.contributor.authorID | Kumar, Pushpena/0000-0002-7755-2837 | |
| dc.date.accessioned | 2025-12-11T01:05:00Z | |
| dc.date.issued | 2024 | |
| dc.department | Ondokuz Mayıs Üniversitesi | en_US |
| dc.department-temp | [Kumar, Pushpendra; Lee, Tae H.] Jeonbuk Natl Univ, Div Elect Engn, Jeonju Si 54896, South Korea; [Erturk, Vedat Suat] Ondokuz Mayis Univ, Fac Arts & Sci, Dept Math, TR-55200 Samsun, Turkiye | en_US |
| dc.description | Kumar, Pushpena/0000-0002-7755-2837; | en_US |
| dc.description.abstract | In this paper, we propose a novel Caputo-type fractional-order cascade tri-neuron Hopfield neural network (HNN) taking no connection between the first and third neuron. We analyse the symmetry and dissipativity of the system using divergence and transformations. The stability of the equilibrium points is checked by fixing the synaptic weights. To further analyse the dynamics of the HNN system, we derive a numerical solution by using the Adams-Bashforth-Moulton method along with its stability analysis. We performed several graphical simulations, considering two synaptic weights as adjustable variables, and explored the fact that the HNN system shows various periodic and chaotic attractors. The reason for proposing a fractional-order HNN is that such a system has limitless memory, which can improve the system's controllability for a wide range of real-world phenomena with important applications. Also, the proposed fractional-order HNN shows better convergence compared to the integer-order case. | en_US |
| dc.description.sponsorship | National Research Foundation of Korea (NRF) - Korea government (MSIT) [RS-2023-00210401] | en_US |
| dc.description.sponsorship | This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. RS-2023-00210401). | en_US |
| dc.description.woscitationindex | Science Citation Index Expanded | |
| dc.identifier.doi | 10.1007/s12346-024-01096-8 | |
| dc.identifier.issn | 1575-5460 | |
| dc.identifier.issn | 1662-3592 | |
| dc.identifier.issue | 5 | en_US |
| dc.identifier.scopus | 2-s2.0-85198045859 | |
| dc.identifier.scopusquality | Q2 | |
| dc.identifier.uri | https://doi.org/10.1007/s12346-024-01096-8 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12712/41196 | |
| dc.identifier.volume | 23 | en_US |
| dc.identifier.wos | WOS:001268327800001 | |
| dc.identifier.wosquality | Q1 | |
| dc.language.iso | en | en_US |
| dc.publisher | Springer Basel AG | en_US |
| dc.relation.ispartof | Qualitative Theory of Dynamical Systems | en_US |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Hopfield Neural Network | en_US |
| dc.subject | Caputo Fractional Derivative | en_US |
| dc.subject | Stability | en_US |
| dc.subject | Bifurcations | en_US |
| dc.subject | Chaos | en_US |
| dc.subject | Adams-Bashforth Method | en_US |
| dc.title | A Novel Fractional-Order Cascade Tri-Neuron Hopfield Neural Network: Stability, Bifurcations, and Chaos | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication |
