Publication:
Leveraging Machine Learning to Unravel the Impact of Cadmium Stress on Goji Berry Micropropagation

dc.authorscopusid58844376300
dc.authorscopusid57778155300
dc.authorscopusid6603354276
dc.authorscopusid55819710100
dc.authorscopusid36773090700
dc.authorscopusid24281979400
dc.authorwosidIsak, Musab/Kbc-8853-2024
dc.authorwosidSimsek, Ozhan/J-1961-2018
dc.authorwosidŞimşek, Özhan/J-1961-2018
dc.authorwosidDönmez, Dicle/J-7996-2018
dc.authorwosidTütüncü, Mehmet/V-8966-2017
dc.authorwosidBozkurt, Taner/Ads-7906-2022
dc.contributor.authorIsak, Musab A.
dc.contributor.authorBozkurt, Taner
dc.contributor.authorTütüncü, Mehmet
dc.contributor.authorDonmez, Dicle
dc.contributor.authorIzgu, Tolga
dc.contributor.authorSimsek, Ozhan
dc.contributor.authorIDIsak, Musab A/0000-0002-5711-0118
dc.contributor.authorIDŞimşek, Özhan/0000-0001-5552-095X
dc.contributor.authorIDBozkurt, Taner/0000-0002-1142-5755
dc.contributor.authorIDTütüncü, Mehmet/0000-0003-4354-6620
dc.date.accessioned2025-12-11T01:33:48Z
dc.date.issued2024
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Isak, Musab A.; Simsek, Ozhan] Appl Sci Erciyes Univ, Grad Sch Nat, Dept Agr Sci & Technol, Kayseri, Turkiye; [Bozkurt, Taner] Tekfen Agr Res Prod & Mkt Inc, Adana, Turkiye; [Tutuncu, Mehmet] Ondokuz Mayis Univ, Fac Agr, Dept Hort, Samsun, Turkiye; [Donmez, Dicle] Cukurova Univ, Biotechnol Res & Applicat Ctr, Adana, Turkiye; [Izgu, Tolga] Natl Res Council Italy CNR, Inst BioEcon, Florence, Italy; [Simsek, Ozhan] Erciyes Univ, Fac Agr, Dept Hort, Kayseri, Turkiyeen_US
dc.descriptionIsak, Musab A/0000-0002-5711-0118; Şimşek, Özhan/0000-0001-5552-095X; Bozkurt, Taner/0000-0002-1142-5755; Tütüncü, Mehmet/0000-0003-4354-6620;en_US
dc.description.abstractThis study investigates the influence of cadmium (Cd) stress on the micropropagation of Goji Berry (Lycium barbarum L.) across three distinct genotypes (ERU, NQ1, NQ7), employing an array of machine learning (ML) algorithms, including Multilayer Perceptron (MLP), Support Vector Machines (SVM), Random Forest (RF), Gaussian Process (GP), and Extreme Gradient Boosting (XGBoost). The primary motivation is to elucidate genotype-specific responses to Cd stress, which poses significant challenges to agricultural productivity and food safety due to its toxicity. By analyzing the impacts of varying Cd concentrations on plant growth parameters such as proliferation, shoot and root lengths, and root numbers, we aim to develop predictive models that can optimize plant growth under adverse conditions. The ML models revealed complex relationships between Cd exposure and plant physiological changes, with MLP and RF models showing remarkable prediction accuracy (R2 values up to 0.98). Our findings contribute to understanding plant responses to heavy metal stress and offer practical applications in mitigating such stress in plants, demonstrating the potential of ML approaches in advancing plant tissue culture research and sustainable agricultural practices.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1371/journal.pone.0305111
dc.identifier.issn1932-6203
dc.identifier.issue6en_US
dc.identifier.pmid38870239
dc.identifier.scopus2-s2.0-85196077058
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1371/journal.pone.0305111
dc.identifier.urihttps://hdl.handle.net/20.500.12712/44628
dc.identifier.volume19en_US
dc.identifier.wosWOS:001248345600009
dc.identifier.wosqualityQ2
dc.language.isoenen_US
dc.publisherPublic Library of Scienceen_US
dc.relation.ispartofPLOS ONEen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.titleLeveraging Machine Learning to Unravel the Impact of Cadmium Stress on Goji Berry Micropropagationen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files