Publication:
Comparison of Machine Learning Techniques and Spatial Distribution of Daily Reference Evapotranspiration in Turkiye

dc.authorscopusid56092042400
dc.authorscopusid56541733100
dc.authorscopusid55976027400
dc.authorscopusid57197005919
dc.authorwosidKüçüktopcu, Erdem/Aba-5376-2021
dc.authorwosidYildirim, Demet/Abf-3312-2020
dc.authorwosidKüçüktopçu, Erdem/Aba-5376-2021
dc.authorwosidCemek, Bilal/Aaz-7757-2020
dc.authorwosidSimsek, Halis/Gnm-6269-2022
dc.contributor.authorYildirim, Demet
dc.contributor.authorKucuktopcu, Erdem
dc.contributor.authorCemek, Bilal
dc.contributor.authorSimsek, Halis
dc.contributor.authorIDKüçüktopcu, Erdem/0000-0002-8708-2306
dc.date.accessioned2025-12-11T01:05:18Z
dc.date.issued2023
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Yildirim, Demet] Agr Irrigat & Land Reclamat, Black Sea Agr Res Inst, Soil & Water Resources Dept, TR-55300 Samsun, Turkiye; [Kucuktopcu, Erdem; Cemek, Bilal] Ondokuz Mayis Univ, Dept Agr Struct & Irrigat, TR-55139 Samsun, Turkiye; [Simsek, Halis] Purdue Univ, Dept Agr & Biol Engn, W Lafayette, IN 47907 USAen_US
dc.descriptionKüçüktopcu, Erdem/0000-0002-8708-2306;en_US
dc.description.abstractReference evapotranspiration (ET0) estimates are commonly used in hydrologic planning for water resources and agricultural applications. Last 2 decades, machine learning (ML) techniques have enabled scientists to develop powerful tools to study ET0 patterns in the ecosystem. This study investigated the feasibility and effectiveness of three ML techniques, including the k-nearest neighbor algorithm, multigene genetic programming, and support vector regression (SVR), to estimate daily ET0 in Turkiye. In addition, different interpolation techniques, including ordinary kriging (OK), co-kriging, inverse distance weighted, and radial basis function, were compared to develop the most appropriate ET0 maps for Turkiye. All developed models were evaluated according to the performance indices such as coefficient of determination (R-2), root mean square error (RMSE), and mean absolute error (MAE). Taylor, violin, and scatter plots were also generated. Among the applied ML models, the SVR model provided the best results in determining ET0 with the performance indices of R-2 = 0.961, RMSE = 0.327 mm, and MAE = 0.232 mm. The SVR model's input variables were selected as solar radiation, temperature, and relative humidity. Similarly, the maps of the spatial distribution of ET0 were produced with the OK interpolation method, which provided the best estimates.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1007/s13201-023-01912-7
dc.identifier.issn2190-5487
dc.identifier.issn2190-5495
dc.identifier.issue4en_US
dc.identifier.scopus2-s2.0-85152564485
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1007/s13201-023-01912-7
dc.identifier.urihttps://hdl.handle.net/20.500.12712/41248
dc.identifier.volume13en_US
dc.identifier.wosWOS:000962800700001
dc.identifier.wosqualityQ1
dc.language.isoenen_US
dc.publisherSpringer Heidelbergen_US
dc.relation.ispartofApplied Water Scienceen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectEvapotranspirationen_US
dc.subjectMachine Learningen_US
dc.subjectGeostatisticen_US
dc.subjectInterpolationen_US
dc.titleComparison of Machine Learning Techniques and Spatial Distribution of Daily Reference Evapotranspiration in Turkiyeen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files