Publication: Adsorbent ve İlaç Salım Sistemleri Olarak Yeni Süpermanyetik Metalik ve Bimetalik Nanokompozitlerin Sentezi ve Karakterizasyonu
Abstract
Bu tez, nanopartikül bazlı kompozitler hazırlamayı ve bu yeni nanomalzemeleri adsorpsiyon ve ilaç salımı için kullanmayı amaçlamaktadır. Tez, süpermanyetik metalik ve bimetalik nanopartiküllerin ve nanokompozitlerinin Kahverengi Mısır Propolisi (BEP) ekstraktı kullanılarak sentezini, karakterizasyonunu ve uygulamalarını ortaya koymak için dört bölümden oluşmaktadır. Bu tezin ilk iki bölümünde, süpermanyetik metalik ve bimetalik nanopartiküller kullanılarak sulu ortamdan zararlı organik boyaları uzaklaştırmak için adsorpsiyon uygulamaları gerçekleştirilmiştir. Demir oksit nanopartiküller (Fe2O3 NP), süpermanyetik demir oksit (Fe3O4 NP) ve altın-demir oksit bimetalik nanopartiküller (Au@Fe3O4 BNP) sentezlenmiştir. Fe3O4 NP'lerin metilen mavisi, kristal menekşe ve malaşit yeşili için boya giderme oranları sırasıyla 70 dakikada %95,2, 50 dakikada %99,4 ve 60 dakikada %96,2 ve Au@Fe3O4 BNP'lerin sırasıyla 50 dakikada %97,1, 30 dakikada %99,1 ve 50 dakikada %98,1'dir. Sonuçlar, sentezlenen Fe3O4 NP'leri ve Au@Fe3O4 BNP'leri sulu ortamdan organik boyaları uzaklaştırmak için fotokatalizör olarak kullanılma potansiyelinin olduğunu göstermektir. Tezin üçüncü ve dördüncü bölümlerinde, sentezlenen Fe3O4 NP'ler ve Au@Fe3O4 BNP'ler, polidopamin (PDA) ile kaplanarak sırasıyla 104,48±21,92 nm ve 125,82±30,25 nm ortalama parçacık boyutlarına sahip çok işlevli PDA@Fe3O4 ve PDA@Au@Fe3O4 nanokompozitleri elde edilmiştir. Kanser tedavisi için kullanılan doksorubisin (DOX), Fe3O4 NP'leri, Au@Fe3O4 BNP'leri, PDA@Fe3O4 nanokompoziti ve PDA@Au@Fe3O4 nanokompoziti üzerine başarıyla yüklenmiştir. DOX yüklü nanotaşıyıcıların VSM analizi, bunların dış manyetik alanlara yanıt verme yeteneklerini gösterdiğini ve DOX'un hedeflenen taşınma sağladığını ortaya koymuştur. Fe3O4 ve Au@Fe3O4 NP'lerinin, PDA@Fe3O4 ve PDA@Au@Fe3O4 nanokompozitlerinin DOX kapsülleme verimliliği sırasıyla %94,15, %70,10, %97,32 ve %81,29'dur. DOX yüklü nanotaşıyıcılar pH 5,4'te sürekli bir DOX salımı gösterdiği ve bu da kanserli hücreleri hedeflemek için uygun ajanlar olduklarını göstermektedir. DOX salım kinetiği pH 7,4 ve pH 5,4'te Korsmeyer-Peppas modeli ile en iyi temsil edilmiştir. Nanotaşıyıcıların ve DOX yüklü nanotaşıyıcıların in vitro sitotoksisite testleri, MDA-MB-453 hücre hattında MTT testi kullanılarak değerlendirilmiş ve 24 saat sonra maksimum toksisite gösterdiği belirlenmiştir. Elde edilen bu sonuçlar değerlendirildiğinde, üretilen bu nanotaşıyıcıların pH kontrollü ilaç taşıma yeteneklerinin olduğu ve bu sayede hedefli kanser tedavisi için umut vadeden ajanlar olduğu ortaya konulmuştur.
This thesis aims to prepare nanoparticle-based composites and utilize these emerging nanomaterials for adsorption and drug release. The thesis is designed in four chapters to present the synthesis, characterization, and applications of metallic and bimetallic nanoparticles and their nanocomposites. In the first two chapters of this thesis, adsorption and degradation tests were conducted to remove harmful organic dyes from the aqueous environment using metallic and bimetallic oxide nanoparticle-based adsorbents. Iron oxide nanoparticles (Fe2O3 NPs), supermagnetic iron oxide (Fe3O4 NPs), and gold-iron oxide bimetallic nanoparticles (Au@Fe3O4 BNPs) were synthesized using Brown Egyptian Propolis (BEP) extract. The removal rates of methylene blue, crystal violet, and malachite green were about 95.2% in 70 min, 99.4% in 50 min, and 96.2% in 60 min for Fe3O4 NPs, and 97.1% in 50 min, 99.1% in 30 min, and 98.1% in 50 min for Au@Fe3O4 BNPs, respectively. As a result, these Fe3O4 NPs and Au@Fe3O4 BNPs have the potential to serve as efficient photocatalysts for removing organic dyes from water. In the third and fourth chapters of the thesis, Fe3O4 NPs and Au@Fe3O4 BNPs were coated with polydopamine (PDA) as multifunctional nanocomposites with average particle sizes of 104.48±21.92 nm and 125.82±30.25 nm, respectively. Doxorubicin (DOX), an anti-cancer therapeutic agent, was successfully loaded onto the synthesized Fe3O4 NPs, Au@Fe3O4 BNPs, PDA@Fe3O4, and PDA@Au@Fe3O4 nanocomposites. Characterization of the DOX-loaded nanocarriers revealed that VSM analysis indicated their ability to respond to external magnetic fields, enabling the targeted transport of DOX. The DOX encapsulation efficiency of Fe3O4 NPs, Au@Fe3O4 BNPs, PDA@Fe3O4, and PDA@Au@Fe3O4 nanocomposites was 94.15%, 70.10%, 97.32%, and 81.29%, respectively. The DOX-loaded nanocarriers exhibited a sustained DOX release at pH 5.4, indicating their appropriateness for targeting cancerous cells. The DOX release kinetics were best represented by the Korsmeyer-Peppas model at pH 7.4 and pH 5.4. The in vitro cytotoxicity tests of the nanocarriers and DOX-loaded nanocarriers were assessed utilizing the MTT assay on the MDA-MB-453 cell line, demonstrating maximum toxicity after 24 h. In light of these results, the fabricated nanocarriers exhibited effective drug delivery capabilities in a low pH environment, making them a promising candidate for targeted cancer therapy.
This thesis aims to prepare nanoparticle-based composites and utilize these emerging nanomaterials for adsorption and drug release. The thesis is designed in four chapters to present the synthesis, characterization, and applications of metallic and bimetallic nanoparticles and their nanocomposites. In the first two chapters of this thesis, adsorption and degradation tests were conducted to remove harmful organic dyes from the aqueous environment using metallic and bimetallic oxide nanoparticle-based adsorbents. Iron oxide nanoparticles (Fe2O3 NPs), supermagnetic iron oxide (Fe3O4 NPs), and gold-iron oxide bimetallic nanoparticles (Au@Fe3O4 BNPs) were synthesized using Brown Egyptian Propolis (BEP) extract. The removal rates of methylene blue, crystal violet, and malachite green were about 95.2% in 70 min, 99.4% in 50 min, and 96.2% in 60 min for Fe3O4 NPs, and 97.1% in 50 min, 99.1% in 30 min, and 98.1% in 50 min for Au@Fe3O4 BNPs, respectively. As a result, these Fe3O4 NPs and Au@Fe3O4 BNPs have the potential to serve as efficient photocatalysts for removing organic dyes from water. In the third and fourth chapters of the thesis, Fe3O4 NPs and Au@Fe3O4 BNPs were coated with polydopamine (PDA) as multifunctional nanocomposites with average particle sizes of 104.48±21.92 nm and 125.82±30.25 nm, respectively. Doxorubicin (DOX), an anti-cancer therapeutic agent, was successfully loaded onto the synthesized Fe3O4 NPs, Au@Fe3O4 BNPs, PDA@Fe3O4, and PDA@Au@Fe3O4 nanocomposites. Characterization of the DOX-loaded nanocarriers revealed that VSM analysis indicated their ability to respond to external magnetic fields, enabling the targeted transport of DOX. The DOX encapsulation efficiency of Fe3O4 NPs, Au@Fe3O4 BNPs, PDA@Fe3O4, and PDA@Au@Fe3O4 nanocomposites was 94.15%, 70.10%, 97.32%, and 81.29%, respectively. The DOX-loaded nanocarriers exhibited a sustained DOX release at pH 5.4, indicating their appropriateness for targeting cancerous cells. The DOX release kinetics were best represented by the Korsmeyer-Peppas model at pH 7.4 and pH 5.4. The in vitro cytotoxicity tests of the nanocarriers and DOX-loaded nanocarriers were assessed utilizing the MTT assay on the MDA-MB-453 cell line, demonstrating maximum toxicity after 24 h. In light of these results, the fabricated nanocarriers exhibited effective drug delivery capabilities in a low pH environment, making them a promising candidate for targeted cancer therapy.
Description
Citation
WoS Q
Scopus Q
Source
Volume
Issue
Start Page
End Page
142
