Publication: Remarks on Symmetric Anharmonic Oscillator
| dc.authorscopusid | 53871491800 | |
| dc.authorscopusid | 16303495600 | |
| dc.authorscopusid | 8898843900 | |
| dc.authorwosid | Erturk, Vedat Suat/Abd-4512-2021 | |
| dc.authorwosid | Asad, Jihad/P-2975-2016 | |
| dc.authorwosid | Asad, Jihad/F-5680-2011 | |
| dc.contributor.author | Jarrar, Rabab | |
| dc.contributor.author | Erturk, Vedat Suat | |
| dc.contributor.author | Asad, Jihad | |
| dc.contributor.authorID | Asad, Jihad/0000-0002-6862-1634 | |
| dc.date.accessioned | 2025-12-11T00:51:55Z | |
| dc.date.issued | 2024 | |
| dc.department | Ondokuz Mayıs Üniversitesi | en_US |
| dc.department-temp | [Jarrar, Rabab; Asad, Jihad] Palestine Tech Univ Kadoorie, Fac Appl Sci, Dept Phys, POB 7, P-305 Tulkarm, Palestine; [Erturk, Vedat Suat] Ondokuz Mayis Univ, Fac Arts & Sci, Dept Math, Samsun, Turkiye | en_US |
| dc.description | Asad, Jihad/0000-0002-6862-1634; | en_US |
| dc.description.abstract | In this study, we analyze a symmetrical anharmonic oscillator that differs from a basic harmonic oscillator by including additional terms in the potential energy function. This oscillator's nonlinear characteristics are important in many physics fields, allowing for modeling of complex systems. We begin by creating the Lagrangian and obtaining the equation of motion through the Euler-Lagrange equation. Both the multi-step differential transforms method (Ms-DTM) and the Runge-Kutta 4th-order (RK4) method are employed to solve this equation, providing both analytical and numerical solutions. By examining these solutions, we confirm our findings and enhance our comprehension of the oscillator's behavior, which can be applied to more intricate nonlinear systems. | en_US |
| dc.description.sponsorship | Palestine Technical University-Kadoorie | en_US |
| dc.description.sponsorship | The authors Rabab Jarrar and Jihad Asad would like to thank Palestine Technical University-Kadoorie for supporting them during this research. | en_US |
| dc.description.woscitationindex | Science Citation Index Expanded | |
| dc.identifier.doi | 10.1177/14613484241275601 | |
| dc.identifier.endpage | 1516 | en_US |
| dc.identifier.issn | 1461-3484 | |
| dc.identifier.issn | 2048-4046 | |
| dc.identifier.issue | 4 | en_US |
| dc.identifier.scopus | 2-s2.0-85201239178 | |
| dc.identifier.scopusquality | Q2 | |
| dc.identifier.startpage | 1509 | en_US |
| dc.identifier.uri | https://doi.org/10.1177/14613484241275601 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12712/39798 | |
| dc.identifier.volume | 43 | en_US |
| dc.identifier.wos | WOS:001290587400001 | |
| dc.identifier.wosquality | Q2 | |
| dc.language.iso | en | en_US |
| dc.publisher | Sage Publications Ltd | en_US |
| dc.relation.ispartof | Journal of Low Frequency Noise Vibration and Active Control | en_US |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Symmetric Anharmonic Oscillator | en_US |
| dc.subject | Multi-Step Differential Transforms Method | en_US |
| dc.subject | Runge-Kutta 4th-Order | en_US |
| dc.subject | Nonlinear Dynamics | en_US |
| dc.subject | Lagrangian Mechanics | en_US |
| dc.subject | Equation of Motion | en_US |
| dc.subject | Analytical Solution | en_US |
| dc.subject | Numerical Solution | en_US |
| dc.title | Remarks on Symmetric Anharmonic Oscillator | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication |
