Publication:
Remarks on Symmetric Anharmonic Oscillator

dc.authorscopusid53871491800
dc.authorscopusid16303495600
dc.authorscopusid8898843900
dc.authorwosidErturk, Vedat Suat/Abd-4512-2021
dc.authorwosidAsad, Jihad/P-2975-2016
dc.authorwosidAsad, Jihad/F-5680-2011
dc.contributor.authorJarrar, Rabab
dc.contributor.authorErturk, Vedat Suat
dc.contributor.authorAsad, Jihad
dc.contributor.authorIDAsad, Jihad/0000-0002-6862-1634
dc.date.accessioned2025-12-11T00:51:55Z
dc.date.issued2024
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Jarrar, Rabab; Asad, Jihad] Palestine Tech Univ Kadoorie, Fac Appl Sci, Dept Phys, POB 7, P-305 Tulkarm, Palestine; [Erturk, Vedat Suat] Ondokuz Mayis Univ, Fac Arts & Sci, Dept Math, Samsun, Turkiyeen_US
dc.descriptionAsad, Jihad/0000-0002-6862-1634;en_US
dc.description.abstractIn this study, we analyze a symmetrical anharmonic oscillator that differs from a basic harmonic oscillator by including additional terms in the potential energy function. This oscillator's nonlinear characteristics are important in many physics fields, allowing for modeling of complex systems. We begin by creating the Lagrangian and obtaining the equation of motion through the Euler-Lagrange equation. Both the multi-step differential transforms method (Ms-DTM) and the Runge-Kutta 4th-order (RK4) method are employed to solve this equation, providing both analytical and numerical solutions. By examining these solutions, we confirm our findings and enhance our comprehension of the oscillator's behavior, which can be applied to more intricate nonlinear systems.en_US
dc.description.sponsorshipPalestine Technical University-Kadoorieen_US
dc.description.sponsorshipThe authors Rabab Jarrar and Jihad Asad would like to thank Palestine Technical University-Kadoorie for supporting them during this research.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1177/14613484241275601
dc.identifier.endpage1516en_US
dc.identifier.issn1461-3484
dc.identifier.issn2048-4046
dc.identifier.issue4en_US
dc.identifier.scopus2-s2.0-85201239178
dc.identifier.scopusqualityQ2
dc.identifier.startpage1509en_US
dc.identifier.urihttps://doi.org/10.1177/14613484241275601
dc.identifier.urihttps://hdl.handle.net/20.500.12712/39798
dc.identifier.volume43en_US
dc.identifier.wosWOS:001290587400001
dc.identifier.wosqualityQ2
dc.language.isoenen_US
dc.publisherSage Publications Ltden_US
dc.relation.ispartofJournal of Low Frequency Noise Vibration and Active Controlen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectSymmetric Anharmonic Oscillatoren_US
dc.subjectMulti-Step Differential Transforms Methoden_US
dc.subjectRunge-Kutta 4th-Orderen_US
dc.subjectNonlinear Dynamicsen_US
dc.subjectLagrangian Mechanicsen_US
dc.subjectEquation of Motionen_US
dc.subjectAnalytical Solutionen_US
dc.subjectNumerical Solutionen_US
dc.titleRemarks on Symmetric Anharmonic Oscillatoren_US
dc.typeArticleen_US
dspace.entity.typePublication

Files