Publication:
Improving Weighted Information Criterion by Using Optimization

dc.authorscopusid23092915500
dc.authorscopusid23093703600
dc.authorscopusid23479719800
dc.authorscopusid57211930065
dc.contributor.authorAladag, C.H.
dc.contributor.authorEgrioglu, E.
dc.contributor.authorGünay, S.
dc.contributor.authorBaşaran, M.A.
dc.date.accessioned2020-06-21T14:52:33Z
dc.date.available2020-06-21T14:52:33Z
dc.date.issued2010
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Aladag] Cagdas Hakan, Department of Statistics, Hacettepe Üniversitesi, Ankara, Turkey; [Egrioglu] Erol, Department of Statistics, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Günay] S̈uleyman, Department of Statistics, Hacettepe Üniversitesi, Ankara, Turkey; [Başaran] Murat Alper, Department of Mathematics, Niğde Ömer Halisdemir University, Nigde, Nigde, Turkeyen_US
dc.description.abstractAlthough artificial neural networks (ANN) have been widely used in forecasting time series, the determination of the best model is still a problem that has been studied a lot. Various approaches available in the literature have been proposed in order to select the best model for forecasting in ANN in recent years. One of these approaches is to use a model selection strategy based on the weighted information criterion (WIC). WIC is calculated by summing weighted different selection criteria which measure the forecasting accuracy of an ANN model in different ways. In the calculation of WIC, the weights of different selection criteria are determined heuristically. In this study, these weights are calculated by using optimization in order to obtain a more consistent criterion. Four real time series are analyzed in order to show the efficiency of the improved WIC. When the weights are determined based on the optimization, it is obviously seen that the improved WIC produces better results. © 2009 Elsevier B.V. All rights reserved.en_US
dc.identifier.doi10.1016/j.cam.2009.11.016
dc.identifier.endpage2687en_US
dc.identifier.issn0377-0427
dc.identifier.issue10en_US
dc.identifier.scopus2-s2.0-73449108019
dc.identifier.scopusqualityQ1
dc.identifier.startpage2683en_US
dc.identifier.urihttps://doi.org/10.1016/j.cam.2009.11.016
dc.identifier.volume233en_US
dc.identifier.wosWOS:000274554900021
dc.identifier.wosqualityQ1
dc.language.isoenen_US
dc.publisherElsevier Science BVen_US
dc.relation.ispartofJournal of Computational and Applied Mathematicsen_US
dc.relation.journalJournal of Computational and Applied Mathematicsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectArtificial Neural Networksen_US
dc.subjectConsistencyen_US
dc.subjectForecastingen_US
dc.subjectModel Selectionen_US
dc.subjectTime Seriesen_US
dc.subjectWeighted Information Criterionen_US
dc.titleImproving Weighted Information Criterion by Using Optimizationen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files