Publication: Modules That Have a Weak Supplement in Every Extension
| dc.authorscopusid | 57214409889 | |
| dc.authorscopusid | 8400794700 | |
| dc.authorscopusid | 36661459200 | |
| dc.contributor.author | Önal, E. | |
| dc.contributor.author | Çalişici, H. | |
| dc.contributor.author | Türkmen, E. | |
| dc.date.accessioned | 2020-06-21T13:39:38Z | |
| dc.date.available | 2020-06-21T13:39:38Z | |
| dc.date.issued | 2016 | |
| dc.department | Ondokuz Mayıs Üniversitesi | en_US |
| dc.department-temp | [Önal] Emine, Department of Mathematics, Kırşehir Ahi Evran Üniversitesi, Kirsehir, Kirsehir, Turkey; [Çalişici] Hamza, Department of Mathematics, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Türkmen] Ergül, Department of Mathematics, Amasya Üniversitesi, Amasya, Turkey | en_US |
| dc.description.abstract | We say that over an arbitrary ring a module M has the property (W E) (respectively, (W E E)) if M has a weak supplement (respectively, ample weak supplements) in every extension. In this paper, we provide various properties of modules with these properties. We show that a module M has the property .WEE/ iff every submodule of M has the property (W E). A ring R is left perfect iff every left R-module has the property (W E) iff every left R-module has the property (W E E). A ring R is semilocal iff every left R-module has a weak supplement in every extension with small radical. We also study modules that have a weak supplement(respectively, ample weak supplements) in every coatomic extension, namely the property (W E*)(respectively, (W E E*)). © 2016 Miskolc University Press. | en_US |
| dc.identifier.doi | 10.18514/MMN.2016.1424 | |
| dc.identifier.endpage | 481 | en_US |
| dc.identifier.issn | 1787-2405 | |
| dc.identifier.issn | 1787-2413 | |
| dc.identifier.issue | 1 | en_US |
| dc.identifier.scopus | 2-s2.0-85010469725 | |
| dc.identifier.scopusquality | Q3 | |
| dc.identifier.startpage | 471 | en_US |
| dc.identifier.uri | https://doi.org/10.18514/MMN.2016.1424 | |
| dc.identifier.volume | 17 | en_US |
| dc.identifier.wos | WOS:000390602900035 | |
| dc.identifier.wosquality | Q2 | |
| dc.language.iso | en | en_US |
| dc.publisher | University of Miskolc matronto@uni-miskolc.hu | en_US |
| dc.relation.ispartof | Miskolc Mathematical Notes | en_US |
| dc.relation.journal | Miskolc Mathematical Notes | en_US |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Coatomic Extension | en_US |
| dc.subject | Left Perfect Ring | en_US |
| dc.subject | Semilocal Ring | en_US |
| dc.subject | Weak Supplement | en_US |
| dc.title | Modules That Have a Weak Supplement in Every Extension | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication |
