Publication:
Modules That Have a Weak Supplement in Every Extension

dc.authorscopusid57214409889
dc.authorscopusid8400794700
dc.authorscopusid36661459200
dc.contributor.authorÖnal, E.
dc.contributor.authorÇalişici, H.
dc.contributor.authorTürkmen, E.
dc.date.accessioned2020-06-21T13:39:38Z
dc.date.available2020-06-21T13:39:38Z
dc.date.issued2016
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Önal] Emine, Department of Mathematics, Kırşehir Ahi Evran Üniversitesi, Kirsehir, Kirsehir, Turkey; [Çalişici] Hamza, Department of Mathematics, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Türkmen] Ergül, Department of Mathematics, Amasya Üniversitesi, Amasya, Turkeyen_US
dc.description.abstractWe say that over an arbitrary ring a module M has the property (W E) (respectively, (W E E)) if M has a weak supplement (respectively, ample weak supplements) in every extension. In this paper, we provide various properties of modules with these properties. We show that a module M has the property .WEE/ iff every submodule of M has the property (W E). A ring R is left perfect iff every left R-module has the property (W E) iff every left R-module has the property (W E E). A ring R is semilocal iff every left R-module has a weak supplement in every extension with small radical. We also study modules that have a weak supplement(respectively, ample weak supplements) in every coatomic extension, namely the property (W E*)(respectively, (W E E*)). © 2016 Miskolc University Press.en_US
dc.identifier.doi10.18514/MMN.2016.1424
dc.identifier.endpage481en_US
dc.identifier.issn1787-2405
dc.identifier.issn1787-2413
dc.identifier.issue1en_US
dc.identifier.scopus2-s2.0-85010469725
dc.identifier.scopusqualityQ3
dc.identifier.startpage471en_US
dc.identifier.urihttps://doi.org/10.18514/MMN.2016.1424
dc.identifier.volume17en_US
dc.identifier.wosWOS:000390602900035
dc.identifier.wosqualityQ2
dc.language.isoenen_US
dc.publisherUniversity of Miskolc matronto@uni-miskolc.huen_US
dc.relation.ispartofMiskolc Mathematical Notesen_US
dc.relation.journalMiskolc Mathematical Notesen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectCoatomic Extensionen_US
dc.subjectLeft Perfect Ringen_US
dc.subjectSemilocal Ringen_US
dc.subjectWeak Supplementen_US
dc.titleModules That Have a Weak Supplement in Every Extensionen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files