Publication:
Application of Artificial Neural Network for Predicting the Drying Kinetics and Chemical Attributes of Linden (Tilia platyphyllos Scop.) During the Infrared Drying Process

dc.authorscopusid57188552484
dc.authorscopusid57947482500
dc.authorscopusid26422654600
dc.authorwosidAl-Khaled, Al-Fadhl/Y-8984-2018
dc.contributor.authorSelvi, Kemal Çağatay
dc.contributor.authorAlkhaled, Alfadhl Yahya
dc.contributor.authorYildiz, Taner
dc.contributor.authorIDAlkahed, Alfadhl/0000-0001-5038-5971
dc.date.accessioned2025-12-11T00:51:33Z
dc.date.issued2022
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Selvi, Kemal Cagatay; Yildiz, Taner] Univ Ondokuz Mayis, Fac Agr, Dept Agr Machinery & Technol Engn, TR-55139 Samsun, Turkey; [Alkhaled, Alfadhl Yahya] Univ Wisconsin, Coll Agr & Life Sci, Dept Hort, Madison, WI 53705 USAen_US
dc.descriptionAlkahed, Alfadhl/0000-0001-5038-5971en_US
dc.description.abstractThis study analyzes the possibility of utilizing artificial neural networks (ANNs) to characterize the drying kinetics of linden leaf samples during infrared drying (IRD) at different temperatures (50, 60, and 70 degrees C) with sample thicknesses between 0.210 mm and 0.230 mm. The statistical parameters were constructed using several thin-layer models and ANN techniques. The coefficient of determination (R-2) and root mean square error (RMSE) were utilized to evaluate the appropriateness of the models. The effective moisture diffusivity ranged from 4.13 x 10(-12) m(2)/s to 5.89 x 10(-12) m(2)/s, and the activation energy was 16.339 kJ/mol. The applied Page, Midilli et al., Henderson and Pabis, logarithmic, and Newton models could sufficiently describe the kinetics of linden leaf samples, with R-2 values of >0.9900 and RMSE values of R-2 and RMSE values of 0.9986 and 0.0210, respectively. In addition, the ANN model made significantly accurate predictions of the chemical properties of linden of total phenolic content (TPC), total flavonoid content (TFC), DPPH, and FRAP, with values of R-2 of 0.9975, 0.9891, 0.9980, and 0.9854, respectively. The validation of the findings showed a high degree of agreement between the anticipated values generated using the ANN model and the experimental moisture ratio data. The results of this study suggested that ANNs could potentially be applied to characterize the drying process of linden leaves and make predictions of their chemical contents.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.3390/pr10102069
dc.identifier.issn2227-9717
dc.identifier.issue10en_US
dc.identifier.scopus2-s2.0-85140896156
dc.identifier.scopusqualityQ3
dc.identifier.urihttps://doi.org/10.3390/pr10102069
dc.identifier.urihttps://hdl.handle.net/20.500.12712/39752
dc.identifier.volume10en_US
dc.identifier.wosWOS:000875964600001
dc.identifier.wosqualityQ3
dc.language.isoenen_US
dc.publisherMDPIen_US
dc.relation.ispartofProcessesen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectLinden Leavesen_US
dc.subjectInfrared Dryingen_US
dc.subjectArtificial Neural Network Modelen_US
dc.subjectTotal Phenolic Contenten_US
dc.subjectTotal Flavonoidsen_US
dc.subjectDPPHen_US
dc.subjectFRAP Contenten_US
dc.titleApplication of Artificial Neural Network for Predicting the Drying Kinetics and Chemical Attributes of Linden (Tilia platyphyllos Scop.) During the Infrared Drying Processen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files