Publication: Machine Learning Techniques-Based Estimation of Monthly Reference Evapotranspiration in Uzbekistan Using Latitude, Longitude, and Elevation Data
| dc.authorscopusid | 58184153400 | |
| dc.authorscopusid | 55976027400 | |
| dc.authorscopusid | 7801628156 | |
| dc.authorscopusid | 57197005919 | |
| dc.authorwosid | Simsek, Halis/Gnm-6269-2022 | |
| dc.contributor.author | Cemek, Emirhan | |
| dc.contributor.author | Cemek, Bilal | |
| dc.contributor.author | Eshkabilov, Sulaymon | |
| dc.contributor.author | Simsek, Halis | |
| dc.date.accessioned | 2025-12-11T00:41:05Z | |
| dc.date.issued | 2025 | |
| dc.department | Ondokuz Mayıs Üniversitesi | en_US |
| dc.department-temp | [Cemek, Emirhan] Istanbul Tech Univ, Dept Civil Engn, Hydraul & Water Resources Engn Program, TR-34469 Istanbul, Turkiye; [Cemek, Bilal] Ondokuz Mayis Univ, Dept Agr Struct & Irrigat, TR-55139 Samsun, Turkiye; [Eshkabilov, Sulaymon] North Dakota State Univ, Dept Agr & Biosyst Engn, Fargo, ND 58108 USA; [Simsek, Halis] Purdue Univ, Dept Agr & Biol Engn, W Lafayette, IN 47907 USA | en_US |
| dc.description.abstract | This study investigates the potential of machine learning algorithms to estimate monthly reference evapotranspiration (ETo) in Uzbekistan using limited input data. ETo values were calculated using the FAO-56 Penman-Monteith method for 10 meteorological stations (1971-2000). Elevation, latitude, longitude, and month number were used as inputs, while ETo was the target output. Multilayer Perceptron (MLP), Adaptive Neuro-Fuzzy Inference Systems (ANFIS), and Random Forest (RF) models were trained and tested using two data-splitting strategies: leave-one-out and 70/30 train-test split. Model performance was evaluated using R2, RMSE, and MAE. Among the models, RF achieved the highest accuracy and generalization capability. While MLP performed well in some locations, its performance was more variable. ANFIS showed sensitivity to membership function selection, with gaussmf performing best. Sensitivity analysis indicated that latitude and longitude were the most influential predictors. The results support the use of machine learning models for ETo estimation and future spatial mapping to assist in water resource management. | en_US |
| dc.description.woscitationindex | Conference Proceedings Citation Index - Science | |
| dc.identifier.doi | 10.1007/978-3-031-97992-7_15 | |
| dc.identifier.endpage | 137 | en_US |
| dc.identifier.isbn | 9783031979910 | |
| dc.identifier.isbn | 9783031979927 | |
| dc.identifier.issn | 2367-3370 | |
| dc.identifier.issn | 2367-3389 | |
| dc.identifier.scopus | 2-s2.0-105013052434 | |
| dc.identifier.scopusquality | Q4 | |
| dc.identifier.startpage | 123 | en_US |
| dc.identifier.uri | https://doi.org/10.1007/978-3-031-97992-7_15 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12712/38395 | |
| dc.identifier.volume | 1529 | en_US |
| dc.identifier.wos | WOS:001587447700015 | |
| dc.language.iso | en | en_US |
| dc.publisher | Springer International Publishing AG | en_US |
| dc.relation.ispartof | Lecture Notes in Networks and Systems | en_US |
| dc.relation.ispartofseries | Lecture Notes in Networks and Systems | |
| dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Reference Evapotranspiration | en_US |
| dc.subject | Artificial Intelligence | en_US |
| dc.subject | Random Forest | en_US |
| dc.subject | Uzbekistan | en_US |
| dc.title | Machine Learning Techniques-Based Estimation of Monthly Reference Evapotranspiration in Uzbekistan Using Latitude, Longitude, and Elevation Data | en_US |
| dc.type | Conference Object | en_US |
| dspace.entity.type | Publication |
