Publication:
Machine Learning Techniques-Based Estimation of Monthly Reference Evapotranspiration in Uzbekistan Using Latitude, Longitude, and Elevation Data

dc.authorscopusid58184153400
dc.authorscopusid55976027400
dc.authorscopusid7801628156
dc.authorscopusid57197005919
dc.authorwosidSimsek, Halis/Gnm-6269-2022
dc.contributor.authorCemek, Emirhan
dc.contributor.authorCemek, Bilal
dc.contributor.authorEshkabilov, Sulaymon
dc.contributor.authorSimsek, Halis
dc.date.accessioned2025-12-11T00:41:05Z
dc.date.issued2025
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Cemek, Emirhan] Istanbul Tech Univ, Dept Civil Engn, Hydraul & Water Resources Engn Program, TR-34469 Istanbul, Turkiye; [Cemek, Bilal] Ondokuz Mayis Univ, Dept Agr Struct & Irrigat, TR-55139 Samsun, Turkiye; [Eshkabilov, Sulaymon] North Dakota State Univ, Dept Agr & Biosyst Engn, Fargo, ND 58108 USA; [Simsek, Halis] Purdue Univ, Dept Agr & Biol Engn, W Lafayette, IN 47907 USAen_US
dc.description.abstractThis study investigates the potential of machine learning algorithms to estimate monthly reference evapotranspiration (ETo) in Uzbekistan using limited input data. ETo values were calculated using the FAO-56 Penman-Monteith method for 10 meteorological stations (1971-2000). Elevation, latitude, longitude, and month number were used as inputs, while ETo was the target output. Multilayer Perceptron (MLP), Adaptive Neuro-Fuzzy Inference Systems (ANFIS), and Random Forest (RF) models were trained and tested using two data-splitting strategies: leave-one-out and 70/30 train-test split. Model performance was evaluated using R2, RMSE, and MAE. Among the models, RF achieved the highest accuracy and generalization capability. While MLP performed well in some locations, its performance was more variable. ANFIS showed sensitivity to membership function selection, with gaussmf performing best. Sensitivity analysis indicated that latitude and longitude were the most influential predictors. The results support the use of machine learning models for ETo estimation and future spatial mapping to assist in water resource management.en_US
dc.description.woscitationindexConference Proceedings Citation Index - Science
dc.identifier.doi10.1007/978-3-031-97992-7_15
dc.identifier.endpage137en_US
dc.identifier.isbn9783031979910
dc.identifier.isbn9783031979927
dc.identifier.issn2367-3370
dc.identifier.issn2367-3389
dc.identifier.scopus2-s2.0-105013052434
dc.identifier.scopusqualityQ4
dc.identifier.startpage123en_US
dc.identifier.urihttps://doi.org/10.1007/978-3-031-97992-7_15
dc.identifier.urihttps://hdl.handle.net/20.500.12712/38395
dc.identifier.volume1529en_US
dc.identifier.wosWOS:001587447700015
dc.language.isoenen_US
dc.publisherSpringer International Publishing AGen_US
dc.relation.ispartofLecture Notes in Networks and Systemsen_US
dc.relation.ispartofseriesLecture Notes in Networks and Systems
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectReference Evapotranspirationen_US
dc.subjectArtificial Intelligenceen_US
dc.subjectRandom Foresten_US
dc.subjectUzbekistanen_US
dc.titleMachine Learning Techniques-Based Estimation of Monthly Reference Evapotranspiration in Uzbekistan Using Latitude, Longitude, and Elevation Dataen_US
dc.typeConference Objecten_US
dspace.entity.typePublication

Files